Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array
Mei-rong Sui, Xiu-quan Gu, Mei-lin Shi, Yong Wang, Lin-lin Liu
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 241-244.
Improved photoelectrochemical performance by forming a ZnO/ZnS core/shell nanorod array
ZnO nanorod arrays (NRAs) were prepared via a facile hydrothermal method for photoelectrochemical (PEC) applications. Then, ZnS thin shell layers were deposited onto them via a facile hydrothermal treatment process for constructing a ZnO/ZnS core/shell structure. It was demonstrated that the PEC activity of a ZnO NRA is enhanced significantly after the surface modification, although there weren’t any obvious changes in the visible-light harvesting efficiency. Both the Nyquist and Mott-Schottky (M-S) plots were employed to reveal the reason, which was attributed to higher electrocatalytic activity of ZnS than that of ZnO and the resulting higher charge transfer efficiency across the solid/liquid interfaces. Finally, a schematic band model was proposed for clarifying the charge carrier transfer mechanism occurred at the interfaces.
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
/
〈 |
|
〉 |