Quantitative analysis of multicomponent mud logging gas based on infrared spectra

Li-mei Song , Su-qing Guo , Yan-gang Yang , Qing-hua Guo , Hong-yi Wang , Hui Xiong

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 312 -316.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 312 -316. DOI: 10.1007/s11801-019-8161-y
Article

Quantitative analysis of multicomponent mud logging gas based on infrared spectra

Author information +
History +
PDF

Abstract

This work deals with quantitative analysis of multicomponent mud logging gas based on infrared spectra. An accurate analysis method is proposed by combining a genetic algorithm (GA) and a radial basis function neural network (RBFNN). The GA is used to screen the infrared spectrum of the mixed gas, while the selected spectral region is used as the input of the RBFNN to establish a calibration model to quantitatively analyze the components of logging gas. The analysis results demonstrate that the proposed GA-RBFNN performs better than FS-RBFNN and ES-RBFNN, and our proposed method is feasible.

Cite this article

Download citation ▾
Li-mei Song, Su-qing Guo, Yan-gang Yang, Qing-hua Guo, Hong-yi Wang, Hui Xiong. Quantitative analysis of multicomponent mud logging gas based on infrared spectra. Optoelectronics Letters, 2019, 15(4): 312-316 DOI:10.1007/s11801-019-8161-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PawełM, MagdalenaN, MariaB, KajaP. Acta Geophysica, 2014, 62: 83

[2]

JiaxinS, FulongN, NengyouW, ShiL, KeZ, LingZ, GuoshengJ. Journal of Petroleum Science and Engineering, 2015, 127: 259

[3]

HaoL, JinboW, BaojiangS, ZhimingY, JinzhiY. Journal of Petroleum Science and Engineering, 2017, 151: 49

[4]

RubinQ, XinY, LiY, ZhenhuiD, JinL, KexinX. Spectroscopy and Spectral Analysis, 2008, 28: 2855

[5]

ZhenhuiD, RubinQ, HuiminZ, XinY, KexinX. Journal of Tianjin University (Science and Technology), 2008, 41: 589

[6]

PengB, YanL, BinZ, JunhuaL. Acta Photonica Sinica, 2008, 37: 566

[7]

AbbasR, EricP, ValeriuV, RabihA, HassanF. Mathematical Biosciences, 2017, 289: 153

[8]

LeiL, JinyongL, PuZ, JinbaoC. Optics Express, 2017, 25: 19680

[9]

SalimH. Modeling Earth Systems and Environment, 2016,

[10]

Cafer MertY, YaşarK, HalimT, Uğur. Journal of Environmental Radioactivity, 2017, 175–176: 78

[11]

GulbagA, TemurtasF, TasaltinC, Ziya ÖztürkZ. Sensors and Actuators B (Chemical), 2007, 124: 383

[12]

XiuchengD, ShouchunW, RenjinS, SuoqiZ. Petroleum Science, 2010, 7: 118

AI Summary AI Mindmap
PDF

133

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/