Protonation effect on the nonlinear absorption, nonlinear refraction and optical limiting properties of tetraphenylporphyrin

Xiao-liang Zhang , Xiao-hong Chen

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (2) : 135 -138.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (2) : 135 -138. DOI: 10.1007/s11801-019-8157-7
Article

Protonation effect on the nonlinear absorption, nonlinear refraction and optical limiting properties of tetraphenylporphyrin

Author information +
History +
PDF

Abstract

Nonlinear optical properties of tetraphenylporphyrin (H2TPP) and protonated tetraphenylporphyrin (H4TPP2+) in toluene were investigated by Z-scan technique using a nanosecond laser with 5 ns pulse at 532 nm. Results show that H4TPP2+ exhibits weaker nonlinear refraction but enhanced reverse saturable absorption (RSA) and optical limiting performance in comparison with pristine H2TPP. Since no nonlinear scattering is observed in H4TPP2+ under low input fluence, and H4TPP2+ exhibits weaker nonlinear scattering signals than H2TPP under high input fluence, the enhancement of RSA and optical limiting performance can be attributed to the larger ratio of excited state absorption cross-section to that of the ground state of H4TPP2+. H4TPP2+ also exhibits superior optical limiting performance, even better than the benchmark RSA material C60.

Cite this article

Download citation ▾
Xiao-liang Zhang, Xiao-hong Chen. Protonation effect on the nonlinear absorption, nonlinear refraction and optical limiting properties of tetraphenylporphyrin. Optoelectronics Letters, 2019, 15(2): 135-138 DOI:10.1007/s11801-019-8157-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DiniD, CalveteM J F, HanackM. Chemical Reviews, 2016, 116: 13043

[2]

PritchettT M, HoffmanR C, MottA G, FerryM J. Applied Optics, 2017, 56: B14

[3]

BharatiM S S, BhattacharyaS, Suman KrishnaJ V, GiribabuL, Venugopal RaoS. Optics and Laser Technology, 2018, 108: 418

[4]

LiuX, WangD, GaoH, YangZ, XingY, CaoH, HeW L, WangH H, GuJ M, HuH Y. Dyes and Pigments, 2016, 134: 155

[5]

CoccaL HZ, GotardoF, SciutiL F, AcunhaT V, IglesiasB A, BoniL D. Chemical Physics Letters, 2018, 708: 1

[6]

WanY, XueY X, ShengN, RuiG H, LvC H, HeJ, GuB, CuiY P. Optics and Laser Technology, 2018, 102: 47

[7]

LiuZ B, ZhuY, ZhuY Z, TianJ G, ZhengJ Y. The Journal of Physical Chemistry B, 2007, 111: 14136

[8]

ZhangX L, ChenX D, LiX C, YingC F, LiuZ B, TianJ G. Journal of Optics, 2013, 15: 055206

[9]

BlauW J, ByrneH, DennisW M, KellyJ M. Optics Communication, 1985, 56: 25

[10]

Ní MhuircheartaighÉ M M, GiordaniS, BlauW J. The Journal of Physical Chemistry B, 2006, 110: 23136

[11]

Sheik-BahaeM, SaidA A, WeiT H, HaganD J, Van StrylandE W. IEEE Journal of Quantum Electron, 1990, 26: 760

[12]

ZhaoY C, NieZQ, ZhaiA P, TianY T, LiuC, ShiC K, JiaB H. Optoelectronics Letters, 2018, 14: 21

[13]

ZhangX L, ZhaoX, LiuZ B, ShiS, ZhouW Y, TianJ G, XuY F, ChenY S. Journal of Optics, 2011, 13: 075202

[14]

WenH, ZhangX L, LiuZ B, YanXQ, LiX C, TianJ G. Optoelectronics Letters, 2015, 11: 161

[15]

SciutiL F, CoccaL H Z, CairesA R L, GonçalvesP J, BoniL D. Chemical Physics Letters, 2018, 706: 652

[16]

KrishnaM BM, KumarV P, VenkatramaiahN, VenkatesanR, RaoD N. Applied Physics Letters, 2011, 98: 081106

[17]

GautamP, DhokaleB, ShuklaV, SinghC P, BindraK S, MisraR. Journal of Photochemistry and Photobiology A: Chemistry, 2012, 239: 24

[18]

LiuZ B, Guo TianJ, ZangW P, ZhouW Y, ZhangC P, ZhangG Y. Chinese Optics Letters, 2003, 20: 509

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/