Influence of Yb2O3 on the 1.53 μm spectroscopic properties in Er3+/Ce3+ co-doped TeO2-WO3-Na2O-Nb2O5 glasses

Shi-chao Zheng , Zhong-jian Kang , Chang-chao Li , Ya-xun Zhou

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 273 -276.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 273 -276. DOI: 10.1007/s11801-019-8156-8
Article

Influence of Yb2O3 on the 1.53 μm spectroscopic properties in Er3+/Ce3+ co-doped TeO2-WO3-Na2O-Nb2O5 glasses

Author information +
History +
PDF

Abstract

The Yb2O3 component was introduced into the Er3+/Ce3+ co-doped tellurite glasses with the composition of TeO2-WO3-Na2O-Nb2O5 to study the effect of Yb3+ on the 1.53 μm spectroscopic properties of Er3+. The X-ray diffraction (XRD) curve and Raman spectrum were measured to investigate the structure nature of synthesized tellurite glasses. The absorption spectrum, upconversion emission spectrum and fluorescence spectrum were measured to evaluate the improved effect of Yb3+ concentration on the 1.53 μm band fluorescence of Er3+. Results of the measured 1.53 μm band fluorescence intensity show a significant improvement with the increase of Yb3+ concentration, while the total quantum efficiency reveals a similar increasing trend. The results of the present work indicate that Er3+/Ce3+/Yb3+ tri-doped tellurite glass has good prospect as a promising gain medium applied for the 1.53 μm broadband amplifier.

Cite this article

Download citation ▾
Shi-chao Zheng, Zhong-jian Kang, Chang-chao Li, Ya-xun Zhou. Influence of Yb2O3 on the 1.53 μm spectroscopic properties in Er3+/Ce3+ co-doped TeO2-WO3-Na2O-Nb2O5 glasses. Optoelectronics Letters, 2019, 15(4): 273-276 DOI:10.1007/s11801-019-8156-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PachK, GolisE, YousefE S, SitarzM, FilipeckiJ. Journal of Molecular Structure, 2018, 1164: 328

[2]

SasikalaT, RamaM L, PavaniK, ChengaiahT. Journal of Alloys and Compounds, 2012, 542: 271

[3]

LingannaK, GarciaR N, ManasaP, DesirenaH, RosaE D L, JayasankarC K. Journal of Rare Earths, 2018, 36: 58

[4]

ChenP, YangF J, ZhouZ Z, HuangB, WuL B, ZhouY X. Optoelectronics Letters, 2016, 12: 340

[5]

XuT F, ZhangX D, DaiS X, NieQ H, ShenX, ZhangX H. Physica B: Phisics of Condensed Matter, 2007, 389: 242

[6]

YangF J, HuangB, WuL B, QiY W, PengS X, LiJ, ZhouY X. Optoelectronics Letters, 2015, 11: 361

[7]

LousteauJ, BoettiN G, ChiaseraA, FerrariM, AbrateS, ScarcigliaG, VenturelloA, MilaneseD. IEEE Photonics Journal, 2012, 4: 194

[8]

SekiyaT, MochidaN, OgawaS. J Non-Cryst Solids, 1994, 176: 105

[9]

MalashkevichG E, SigaevV N, GolubevN V, SavinkovV I, SarkisovP D, KhodasevichI A, DashkevichV I, MudryiA V. Journal of Non-Crystalline Solids, 2011, 357: 67

[10]

JakutisJ, GomesL, AmancioC T, KassabL R P, MartinelliJ R, WetterN U. Optical Materials, 2010, 33: 107

[11]

JuddB R. Physical Review, 1962, 127: 750

[12]

OfeltG S. The Journal of Chemical Physics, 1962, 37: 511

[13]

TanabeS, OhyagiT, SogaN, HanadaT. Physical Review B, 1992, 46: 3305

[14]

AmjadJ R, SaharM R, GhoshalS K, DoustiM R, RiazS, SamavatiA R, ArifinR, NaseemS. Journal of Luminescence, 2013, 136: 145

[15]

ChenY J, HuangY D, HuangM L, ChenR P, LuoZ D. Optial Materials, 2004, 25: 271

[16]

ZhengS C, ZhouY X, YinD D, XuX C, WangX S. Optical Materials, 2013, 35: 1526

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/