Enhancement of the up-conversion luminescence of ZnO:Yb3+/Er3+ by photonic crystals

Xiao-hui Zhang, Hai-ming Zhang, Yu-Jie Li

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 195-199.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 195-199. DOI: 10.1007/s11801-019-8150-1
Article

Enhancement of the up-conversion luminescence of ZnO:Yb3+/Er3+ by photonic crystals

Author information +
History +

Abstract

The opal photonic crystals (PCs) were assembled by vertical deposition of polystyrene microspheres (PS), in which Yb3+, Er3+ co-doped ZnO powders were deposited on the surface of PC films. The phase, structure and morphology of the obtained samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscope (TEM). The performance of up-conversion photoluminescence (UCPL) was investigated by fluorescence spectrophotometer. The up-conversion (UC) emission of ZnO:Yb3+/Er3+ on the PC surface is notably enhanced when the UC emission wavelength is overlapped with the photonic bandgaps of opals, which is attributed to Bragg reflection of photonic bandgap. The results show that PCs may have potential applications in the enhancement of UCPL and optoelectronic devices.

Cite this article

Download citation ▾
Xiao-hui Zhang, Hai-ming Zhang, Yu-Jie Li. Enhancement of the up-conversion luminescence of ZnO:Yb3+/Er3+ by photonic crystals. Optoelectronics Letters, 2019, 15(3): 195‒199 https://doi.org/10.1007/s11801-019-8150-1

References

[1]
MenyukN, DwightK, PierceJW. Applied Physics Letters, 1972, 21: 159
CrossRef Google scholar
[2]
ZouW, VisserC, MaduroJA, PshenichnikovMS, HummelenJC. Nature Photonics, 2012, 6: 560
CrossRef Google scholar
[3]
HuangXY, HanSY, HuangW, LiuXG. Chemical Society Reviews, 2013, 42: 173
CrossRef Google scholar
[4]
MondalM, RaiVK, SrivastavaC. Chem. Eng. J., 2017, 327: 838
CrossRef Google scholar
[5]
LiuCY, GaoZY, ZengJF, HouY, FangF, LiYL, QiaoRR, ShenL, LeiH, YangWS, GaoMY. ACS Nano, 2013, 7: 7227
CrossRef Google scholar
[6]
WangJ, DengR, MacDonaldMA, ChenB, YuanJ, WangF, ChiD, HorTS, ZhangP, LiuG, HanY, LiuX. Nature Materials, 2014, 13: 157
CrossRef Google scholar
[7]
DongH, SunL-D, YanCH. Nanoscale, 2013, 5: 5703
CrossRef Google scholar
[8]
ChenC, LiC, ShiZ. Advanced Science, 2016, 3: 1600029
CrossRef Google scholar
[9]
HaaseM, SchaferH. Angewandte Chemie International Edition, 2011, 50: 5808
CrossRef Google scholar
[10]
YadavRS, DhobleSJ, RaiSB. Sensors and Actuators: B. Chemical, 2018, 273: 1425
CrossRef Google scholar
[11]
YuX, LiangS, SunZ, DuanY, QinY, DuanL, XiaH, ZhaoP, LiD. Optics Communications, 2014, 313: 90
CrossRef Google scholar
[12]
BaiY, WangY, YangK, ZhangX, SongY, WangCH. Optics Communications, 2008, 281: 5448
CrossRef Google scholar
[13]
MohamedM B, VolkovV, LinkS, El-SayedM A. Chemical Physics Letters, 2000, 317: 517
CrossRef Google scholar
[14]
SaboktakinM, YeX, OhS, HongS, FafaemanA T, ChettiarU K, EnghetaN, MurryC B, KaganC. ACS Nano, 2012, 6: 8758
CrossRef Google scholar
[15]
ChaiZ, YangZ, QiuJ. Ceramics International, 2018, 04: 218
[16]
ZhuX, ZhouJ, ChenM, ShiM, FengW, LiF. Biomaterials, 2012, 33: 4618
CrossRef Google scholar
[17]
DengW, SudheendraL, ZhaoJ, FuJ, JinD, KennedyI M, GoldysE M. Nanotechnology, 2011, 22: 325604
CrossRef Google scholar
[18]
AnjanaR, SubhaP P, KuriasM K, JayarajM K. Methods and Applications in Fluorescence, 2017, 6: 015005
CrossRef Google scholar
[19]
YangZ W, ZhuK, SongZ G, ZhouD C, YinZ Y, QiuJ B. Applied Optics, 2011, 50: 287
CrossRef Google scholar
[20]
YanD, ZhuJ L, WuH J, YangZ W, QiuJ B, SongZ G, YuX, YangY, YinZ Y, WangR F. Journal of Materials Chemistry, 2012, 22: 18558
CrossRef Google scholar
[21]
YangZ W, ZhuK, SongZ G, ZhouD C, YinZ Y, QiuJ B. Applied Optics, 2011, 50: 287
CrossRef Google scholar
[22]
YablonvitchC. Physical Review Letters, 1987, 58: 2059
CrossRef Google scholar
[23]
ZhuY, JiaY, ChenQ, WangC. Journal of Luminescence, 2018, 194: 420
CrossRef Google scholar
[24]
ChenX, YangS, ZhengYC, ChenY, HouY, YangXH, YangHG. Advanced Science, 2015, 2: 1500105
CrossRef Google scholar
[25]
ArandiyanH, DaiH, DengJ, LiuY, BaiB, WangY, LiX, XieS, LiJ. Journal of Catalysis, 2013, 307: 327
CrossRef Google scholar
[26]
GonçalvesM C, FortesL M, AlmeidaR M, ChiaseraA, ChiappiniA, FerrariM, BhakthaS. Journal of Sol-Gel Science and Technology, 2010, 55: 52
CrossRef Google scholar
[27]
ValléeR A L, KolaricB, BaertK, van der AuweraerM, ClaysK. Physical Review B, 2007, 76: 045113
CrossRef Google scholar
[28]
ZhangX, ZhangH, WeiL, ZhangY, ZhangB. Journal of Materials Science: Materials in Electronics, 2018, 29: 15060
[29]
YangZ, ZhouJ, HuangX, XieQ, FuM, LiB, LiL. Journal of Alloys and Compounds, 2009, 471: 241
CrossRef Google scholar
[30]
LiaoJ-y, YangZ-w, WuH-j, YanD, QiuJ-b. Journal of Materials Chemistry C, 2013, 1: 6541
CrossRef Google scholar
[31]
RakovN, GuimarãesRB, MacielGS. Journal of Luminescence, 2011, 131: 342
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/