Spectrum manipulation of a dual-stop-band meta material terahertz filter based on unit cell dimension changes

Wei Xu , Hai-yang Guo , Xiu-han Li , Dong-dong Xu , Guo-wu Wei , Wen-qiong Liang , Ya-qi Bi , Yong Qin

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 174 -178.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (3) : 174 -178. DOI: 10.1007/s11801-019-8146-x
Article

Spectrum manipulation of a dual-stop-band meta material terahertz filter based on unit cell dimension changes

Author information +
History +
PDF

Abstract

We numerically and experimentally proposed a dual-stop-band terahertz filter based on standard microelectronic fabrication method. The stop bands locate at 0.32 THz and 1.02 THz with 3 dB bandwidths of 0.26 THz and 0.55 THz, respectively. The resonance characteristics of the proposed device were discussed with the help of surface current maps and field density maps extracted from computer simulation software to better understand the working principle of the proposed device. On top of that, a total of seven devices with different dimensions were fabricated to fully discuss the dimension effects on the resonant frequency shift and bandwidth changes. This fabrication process is applicable for related integrated metamaterial devices and provides essential experiment evidences for effective ways of manipulating the transmission spectrum of the proposed filter.

Cite this article

Download citation ▾
Wei Xu, Hai-yang Guo, Xiu-han Li, Dong-dong Xu, Guo-wu Wei, Wen-qiong Liang, Ya-qi Bi, Yong Qin. Spectrum manipulation of a dual-stop-band meta material terahertz filter based on unit cell dimension changes. Optoelectronics Letters, 2019, 15(3): 174-178 DOI:10.1007/s11801-019-8146-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

PendryJ B, HoldenA J R D J, StewartW J. IEEE Transactions on Microwave Theory Techniques, 1999, 47: 2075

[2]

GrzegorczykT M, KongJ A. Journal of Electromagnetic Waves & Applications, 2006, 20: 2053

[3]

WangQ, ZengL, LeiM, BiK. Aip Advances, 2015, 5: 203

[4]

GuptaM, SaxenaJ. Wireless Personal Communications, 2013, 71: 3011

[5]

LeeC, ZhuM. Journal of Lightwave Technology, 2015, 33: 3280

[6]

WuP C, CaiH, GuY D, ZhuW M, ZhangW, YangZ C. Dynamic Metasurface for Broadband Electromagnetic Modulator in Reflection. IEEE International Conference on MICRO Electro Mechanical Systems, 2016, 230

[7]

KunduA, LahiriS K, MaityS, GuptaB, SahaH, DasS. Journal of Mi-cromechanics & Microengineering, 2012, 22: 2303

[8]

TeraoT. Journal of Modern Optics, 2013, 60: 1997

[9]

GilM, BonacheJ, MartínF. Metamaterials, 2008, 2: 186

[10]

LuM, LiW, BrownE R. Optics Letters, 2011, 36: 1071

[11]

ChenH T, O’HaraJ F, TaylorA J, AverittR D, High-streteC, LeeM. Optics Express, 2007, 15: 1084

[12]

QiL M, LiC, FangG Y, LiS C. Chinese Physics B, 2015, 24: 522

[13]

Kleine-OstmannT, NagatsumaT. Journal of Infrared Millimeter & Terahertz Waves, 2011, 32: 143

[14]

XiongL, LanyingY, ChenggangH, XiangangL, MinghuiH. Optics Express, 2011, 19: 5283

[15]

WeiZ, LiX, YinJ, HuangR, LiuY, WangW. Optics Express, 2016, 24: 14344

[16]

ZhongL, ZhangB, HeT, LvLF, HouYB, ShenJL. Applied Physics Letters, 2016, 108: 103301

[17]

GengZ, ZhangX, LiuJ. IEEE Photonics Journal, 2018, 10: 1

[18]

HuX, HuangQ, ZhaoY, CaiH, LuY. Journal of Electronic Materials, 2017, 46: 1

[19]

MacDonaldM E. Angelos Alexanian and Robert A. York, IEEE Transactions on Microwave Theory & Techniques, 2000, 48: 712

[20]

AzadA K, O’HaraJ F. Evgenya Smirnova and Antoinette J. Taylor, Applied Physics Letters, 2008, 92: 2075

[21]

FarahaniH B, MühlschlegelJ, EislerP, PohlH J, MartinD W, J FO. Science, 2005, 308: 1607

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/