Design and study of a long-wavelength monolithic high-contrast grating resonant-cavity-enhanced photodetector

Kun Zeng , Xiao-feng Duan , Yong-qing Huang , Kai Liu , Xiao-min Ren

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 250 -254.

PDF
Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (4) : 250 -254. DOI: 10.1007/s11801-019-8141-2
Article

Design and study of a long-wavelength monolithic high-contrast grating resonant-cavity-enhanced photodetector

Author information +
History +
PDF

Abstract

Novel construction of a resonant-cavity-enhanced photodetector (RCE-PD) with monolithic high-contrast grating (HCG) is proposed to overcome the difficulty of fabricating a high reflective mirror of RCE-PD at 1 550 nm. In this structure, HCG serves as the top mirror of the RCE-PD, whereas InGaAs serves as a sacrificial layer to achieve monolithic integration. During the bandwidth optimization, the ratio of the thickness of the total intrinsic region and the absorption layer is introduced to realize the simultaneous optimization of the thickness of spacing layers and absorption layer. After structural optimization, the quantum efficiency of the device with diameter of 20 μm is 82% at 1 550 nm, and the 3-dB bandwidth is 34 GHz at a bias of 3 V.

Cite this article

Download citation ▾
Kun Zeng, Xiao-feng Duan, Yong-qing Huang, Kai Liu, Xiao-min Ren. Design and study of a long-wavelength monolithic high-contrast grating resonant-cavity-enhanced photodetector. Optoelectronics Letters, 2019, 15(4): 250-254 DOI:10.1007/s11801-019-8141-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CorbettB, ConsidineL, WalshS, KellyW M. Electronics Letters, 1993, 29: 2148

[2]

UnlüM S, SuiteS. Journal of Applied Physics, 1995, 6: 607

[3]

BelingA, CampbellJ C. Journal of Lightwave Technology, 2009, 6: 343

[4]

ChenQ-t, HuangY-q, ZhangX-p, DuanX-f, FeiJ-r, MaX-k, TaoL, WuG, RenX-m. IEEE Photonics Technology Letters, 2017, 6: 1

[5]

DuanX-f, ChenH-l, HuangY-q, LiuK, CaiS-w, RenX-m. Applied Physics Express, 2018, 6: 012201

[6]

HuangH, HuangY-q, WangX-y, WangQ, RenX-m. Photonics Technology Letters IEEE, 2004, 6: 245

[7]

RenX-m, HuangH, ChongY-z, HuangY-q. Microwave & Optical Technology Letters, 2004, 133

[8]

YangW, GerkeS A, ZhuL, ChaseC, RaoY, Chang-HasnainC J. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 6: 178

[9]

LearkthanakhachonS, YvindK, ChungI S. Proceedings of SPIE - The International Society for Optical Engineering, 2013, 6: 86330

[10]

LearkthanakhachonS, TaghizadehA, ParkG C, YvindK, ChungI S. Optics Express, 2016, 6: 16512

[11]

YeZ, MichaelM, JohannesK, MichaelC Y, Huang, ConnieJ, Chang-Hasnain. Optics Express, 2008, 6: 17282

[12]

ConnieJ, Chang-Hasnain, WeijianY. Opt. Photon, 2012, 6: 379

[13]

NiuC, Chang, Sheng-jiang. Optoelectronics Letters, 2012, 6: 264

[14]

DuanX-f, ZhangM, HuangY-q, LiuK, ShangY-f, RenX-m. IEEE Photonics Technology Letters, 2017, 6: 209

[15]

BekeleD A, ParkG C, MalureanuR, ChungI S. IEEE Photonics Technology Letters, 2015, 6: 1733

[16]

PereiraJ, MatosV. International Journal of Applied Electromagnetics and Mechanics, 2016, 6: 641

[17]

HollenhorstJ N. Journal of Lightwave Technology, 1990, 6: 531

[18]

XuZ-x, GaoJ-j. IET Optoelectronics, 2017, 6: 103

[19]

PereiraJ M, TorresJ P N. Photonic Sensors, 2016, 6: 63

[20]

KishinoK, UnluM S, ChyiJ I, MorkocH. IEEE J Quantum Electron, 1991, 6: 607

[21]

DiJ, HuangY-q, DuanX-f, SongH-l, RenX-m, HuangH, WangQ. Optoelectronics Letters, 2010, 6: 265

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/