Organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl as a spacer between dual ultrathin layers

Li-shuang Wu, Xiao-lin Wang, Jia-ping You, Zi-sheng Su, Hui-shan Yang

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (2) : 127-131.

Optoelectronics Letters ›› 2019, Vol. 15 ›› Issue (2) : 127-131. DOI: 10.1007/s11801-019-8131-4
Article

Organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl as a spacer between dual ultrathin layers

Author information +
History +

Abstract

White organic light-emitting devices (WOLEDs) were fabricated by using a highly blue fluorescent dye of 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl (DPVBi) and a red fluorescent dye of 5H-benzo[ij] quinolizin-9-yl) ethenyl]-4H-pyran-4-ylidene] propane-dinitrile (DCM2), together with a green fluorescent dye of 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7-tetramethyl-1H,5H,11H-(1)-benzopyroyran-o(6,7-8-i,j) quinolizin-11-one (C545T). The multilayer WOLEDs does not involve the doping process. The structure of the device is indium tin oxide (ITO)/4,4’,4”-tris{N,-(3-methylphenyl)-N-phenylamin}triphenylamine (m-MTDATA) (55 nm)/ N,N’-bis-(1-naphthyl)-N,N’-diphenyl-1,1’-biph-enyl-4,4’-diamine (NPB) (10 nm)/ DPVBi (8 nm)/ C545T (x nm)/ DPVBi (5 nm)/ DCM2 (y nm)/ tris- (8-hydroxyquinoline) aluminum (Alq3) (60nm)/ LiF (1 nm)/ Al, where the DPVBi is introduced as a spacer. By changing the thicknesses of dual ultrathin layers of C545T and DCM2, the WOLED is obtained. When x=y=0.05, the Commission Internationale de 1’Eclairage (CIE) coordinates of the device change from (0.262 6, 0.351 4) at 4 V to (0.214 7, 0.269 3) at 12 V that are well in the white region. Its maximum luminance is 41400 cd/m2 at 13 V, and the maximum current efficiency and the maximum power efficiency are 7.95 cd/A at 6 V and 5.37 lm/W at 5 V, respectively.

Cite this article

Download citation ▾
Li-shuang Wu, Xiao-lin Wang, Jia-ping You, Zi-sheng Su, Hui-shan Yang. Organic light-emitting devices based on 4,4’-bis(2,2’-diphenyl vinyl)-1,1’-biphenyl as a spacer between dual ultrathin layers. Optoelectronics Letters, 2019, 15(2): 127‒131 https://doi.org/10.1007/s11801-019-8131-4

References

[1]
TangC W, VanSlkyeS A. Appl. Phys. Lett., 1987, 51: 913
CrossRef Google scholar
[2]
DuggalA R, ShiangJ J, HellerC M, FoustD F. Appl. Phys. Lett., 2002, 80: 3470
CrossRef Google scholar
[3]
KidoJ, KimuraM, NagaiK. Science, 1995, 267: 1332
CrossRef Google scholar
[4]
D’AndradeB W, HolmesR J, ForrestS R. Adv. Mater., 2004, 16: 624
CrossRef Google scholar
[5]
ChuenC H, TaoY T, WuF I, ShuC F. Appl. Phys. Lett., 2004, 85: 4609
CrossRef Google scholar
[6]
KoC W, TaoY T. Appl. Phys. Lett., 2004, 79: 4234
CrossRef Google scholar
[7]
TsujiT, NakaS, OkadaH, OnnagawaH. Appl. Phys. Lett., 2002, 81: 3329
CrossRef Google scholar
[8]
AdachiC, BaldoM A, ForrestS R, LamanskyS, ThompsonM E, WongR C. Appl. Phys. Lett., 2001, 78: 1622
CrossRef Google scholar
[9]
MoonC-B, SongW, MengM, KimN H, YoonJ-A, KimW Y, WoodR, MascherP. J. Lumin., 2014, 146: 314
CrossRef Google scholar
[10]
SeoY-S, MoonD-G. Current Applied Physics, 2014, 14: 1188
CrossRef Google scholar
[11]
Wen-faX, YiZ, Chuan-nanL, Shi-yongL. Semicond. Sci. Technol., 2005, 20: L57
CrossRef Google scholar
[12]
Hui-shanY, YiZ, Jing-yingH, Shi-yongL. Displays, 2006, 27: 183
CrossRef Google scholar
[13]
Wen-faX, Zhi-junW, Shi-yongL, Shuit-tongL. J. Phys. D: Appl. Phys., 2003, 36: 2331
CrossRef Google scholar
[14]
JuanZ, Jun-shengY, XiaoW, LeiZ. Solid-State Electronics, 2013, 81: 63
CrossRef Google scholar
[15]
Hui-shanY. J. Lumin., 2013, 142: 231
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/