International comparison of the SIAR measurement and the WRR standard

Xiao Tang , Yun-zhi Xia , We Fang , Yu-peng Wang , Xin Ye

Optoelectronics Letters ›› : 147 -150.

PDF
Optoelectronics Letters ›› : 147 -150. DOI: 10.1007/s11801-019-8117-2
Article

International comparison of the SIAR measurement and the WRR standard

Author information +
History +
PDF

Abstract

We experimentally compare the solar irradiance absolute radiometer (SIAR) measurement with the world radiometric reference (WRR) standard to improve the accuracy of instrument. The SIAR joined in the international pyrheliometer comparison (IPC) in 2000. The comparison results show that the calibration factors for SIAR to WRR are 0.999 220, 1.001 694, 0.998 334 and 0.997 439 in the 9th IPC, the 10th IPC, the 11th IPC and the 12th IPC, respectively. These results are added to the measurement uncertainty budget of SIAR. The repeatability of the SIAR-type absolute radiometers is also investigated. The relative error introduced by two SIAR-type absolute radiometers is within 0.25%.

Cite this article

Download citation ▾
Xiao Tang, Yun-zhi Xia, We Fang, Yu-peng Wang, Xin Ye. International comparison of the SIAR measurement and the WRR standard. Optoelectronics Letters 147-150 DOI:10.1007/s11801-019-8117-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KoppG, FehlmannA, FinsterleW, HarberD, HeuermanK, WilsonR. Metrologia, 2012, 49: S29

[2]

PulliT, DonsbergT, PoikonenT, ManoocheriF, KarhaP, IkonenE. Light: Science & Applications, 2015, 4: 2015.105

[3]

FehlmannA. Metrology of Solar Radiometry, 2011,

[4]

SuterM. Advance in Solar Radiometer, 2014,

[5]

FrohlichC. Metrologia, 1991, 28: 111

[6]

Yu-pengW, KaiW, Rui-dongJ, WeiF. Opt. Precision Eng., 2016, 24: 65 in Chinese)

[7]

Li-weiS, XinY, Yu-pengW, WeiF. Opt. Precision Eng., 2017, 25: 2259 in Chinese)

[8]

XinG, KaiW, WeiF. Opt. Precision Eng., 2018, 26: 624 in Chinese)

[9]

Hong-ruiW, Yu-pengW, XinY, Dong-junY, KaiW, Hui-duanL, WeiF. Solar Phys., 2017, 292: 8

[10]

Bin-xiY, WeiF, Shun-haiY, YuA, Chen-huG, ZheL, Xi-fengJ. Acta Opt. Sinca, 2003, 23: 112(in Chinese)

[11]

Hong-ruiW, Hui-duanL, WeiF. Applied Optics, 2014, 53: 1718

[12]

Zhong-dongY, Nai-mengL, JunY. Overview of FY-3 Payload and Ground Application System, IEEE Transaction on Geoscience and Remote Sensing, 2012, 50: 4846

[13]

WeiF, Hong-ruiW, Hui-duanL, Yu-pengW. Solar Physics, 2014, 289: 4711

[14]

FehlmannA, KoppG, FinsterleW. Metrologia, 2012, 49: S452012

[15]

Wei-weiP, Xiao-binZ, Jian-junL, Xue-shunS, Hao-yuW, Mao-pengX, Dong-yangG, Jian-mingS, TaoQ, QingK. Chin. Opt. Lett., 2015, 13: 051201

[16]

KoppG, LawrenceG. Solar Physics, 2005, 230: 91

[17]

XiaoT, WeiF, Yu-pengW, Dong-junY, Xiao-longY. Optoelectronics Letters, 2017, 13: 179

[18]

XiaoT, PingJ, KaiW, Bao-qiS, WeiF, Yu-pengW. Opt. Precision Eng., 2016, 24: 2370 in Chinese)

[19]

Qian-qianF. Research of the Blackbody Cavity and Nonequivalence of Spatial Cryogenic Radiometer, 2014,

[20]

Qian-qianF, WeiF, Zhen-lingY, Bin-xiY, Hong-binH. Metrologia, 2012, 49: 572

[21]

WinklerR. Cryogenic Solar Absolute Radiometer, 2011,

[22]

FedchakJ A, CarterA C, DatlaR. Metrologia, 2006, 43: S41

[23]

XiaoT, PingJ, Yu-pengW, XinY, WeiF. International Journal of Multimedia and Ubiquitous Engineering, 2017, 12: 131

[24]

Hong-ruiW, Hui-duanL, JinQ, WeiF. Solar Phys., 2015, 290: 645

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/