Optimization of GaAs-based 940 nm infrared light emitting diode with dual-junction design

Hong-liang Lin , Xiang-hua Zeng , Shi-man Shi , Hai-jun Tian , Mo Yang , Kai-ming Chu , Kai Yang , Quan-su Li

Optoelectronics Letters ›› : 113 -116.

PDF
Optoelectronics Letters ›› : 113 -116. DOI: 10.1007/s11801-019-8113-6
Article

Optimization of GaAs-based 940 nm infrared light emitting diode with dual-junction design

Author information +
History +
PDF

Abstract

Epitaxial growths of the GaAs/AlGaAs-based 940 nm infrared light emitting diodes (LEDs) with dual junctions were carried out by using metalorganic chemical vapor deposition (MOCVD) with different doping concentrations and Al contents in AlxGa1-x As compound. And their optoelectric properties show that the optimal design for tunneling region corresponds to P++ layer with hole concentration up to 1×1020 cm−3, N++ layer electron concentration up to 5×1019 cm−3 and constituent Al0.2Ga0.8As in the tunneling junction region. The optimized dual-junction LED has a forward bias of 2.93 V at an injection current of 50 mA, and its output power is 24.5 mW, which is 104% larger than that of the single junction (12 mW). Furthermore, the optimized device keeps the same spectral characteristics without introducing excessive voltage droop.

Cite this article

Download citation ▾
Hong-liang Lin, Xiang-hua Zeng, Shi-man Shi, Hai-jun Tian, Mo Yang, Kai-ming Chu, Kai Yang, Quan-su Li. Optimization of GaAs-based 940 nm infrared light emitting diode with dual-junction design. Optoelectronics Letters 113-116 DOI:10.1007/s11801-019-8113-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZinovchukA V, MalyutenkoO Y, MalyutenkoV K, PodoltsevA D, VilisovA A. J. Appl. Phys., 2008, 104: 033115

[2]

XuDP, D’SouzaM, ShinJC, MawstLJ, BotezD. J. Crystal Growth, 2008, 310: 2370

[3]

KimD K, LeeH J, AnW-C, KimH G, KwacL K. J. Korean Phys. Society, 2018, 72: 1020

[4]

LuH D, ZhangB, GuoF M. Opt Quant Electron, 2016, 48: 181

[5]

CevherZ, FolkesP A, HierH S, VanMilB L, ConnellyB C, BeckW A, RenY H. J. Appl. Phys., 2018, 123: 161512

[6]

BanD, LuoH, LiuH C, WasilewskiZ R, BuchananM. IEEE Photonics Technol. Lett., 2005, 17: 1477

[7]

DasD, GhadiH, TongbramB, SinghSM, ChakrabartiS. J. Lumin., 2017, 192: 277

[8]

Cortes-MestizoI E, BrionesE, Yee-RendónCM, Zamora PeredoL, Espinosa-VegaLI, DroopadR, Méndez-GarcíaV H. J. Crystal Growth, 2017, 477: 59

[9]

HerreraR A, Alvarez OcampoC A. J. Nonlin. Optical Phys. & Mate., 2017, 26: 1750031

[10]

WaltherT, KrysaAB. J. Microscopy, 2005, 268: 298

[11]

KimD K, LeeH J. J. Nanoscien. and Nanotechn., 2018, 18: 2014

[12]

KawazuT, NodaT, SakumaY. Appl. Phys. Lett., 2018, bd112: 072101

[13]

SoutoJ, PuraJ L, TorresA, JiménezJ, BettiatiM, LaruelleF J. Microelectron. Reliability, 2016, 64: 627

[14]

ZhangZ Z, FuZ L, GuoX G, CaoJ C. Chin. Phys. B, 2018, 27: 030701

[15]

WuC-H, WuC-H. Appl. Phys. Lett., 2014, 105: 171104

[16]

ThomaJ, LiangB L, LewisL, HegartyS P, HuyetG, HuffakerD L. Appl. Phys. Lett., 2013, 102: 113101

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/