Optimization of GaAs-based 940 nm infrared light emitting diode with dual-junction design

Hong-liang Lin, Xiang-hua Zeng, Shi-man Shi, Hai-jun Tian, Mo Yang, Kai-ming Chu, Kai Yang, Quan-su Li

Optoelectronics Letters ›› , Vol. 15 ›› Issue (2) : 113-116.

Optoelectronics Letters ›› , Vol. 15 ›› Issue (2) : 113-116. DOI: 10.1007/s11801-019-8113-6
Article

Optimization of GaAs-based 940 nm infrared light emitting diode with dual-junction design

Author information +
History +

Abstract

Epitaxial growths of the GaAs/AlGaAs-based 940 nm infrared light emitting diodes (LEDs) with dual junctions were carried out by using metalorganic chemical vapor deposition (MOCVD) with different doping concentrations and Al contents in AlxGa1-x As compound. And their optoelectric properties show that the optimal design for tunneling region corresponds to P++ layer with hole concentration up to 1×1020 cm−3, N++ layer electron concentration up to 5×1019 cm−3 and constituent Al0.2Ga0.8As in the tunneling junction region. The optimized dual-junction LED has a forward bias of 2.93 V at an injection current of 50 mA, and its output power is 24.5 mW, which is 104% larger than that of the single junction (12 mW). Furthermore, the optimized device keeps the same spectral characteristics without introducing excessive voltage droop.

Cite this article

Download citation ▾
Hong-liang Lin, Xiang-hua Zeng, Shi-man Shi, Hai-jun Tian, Mo Yang, Kai-ming Chu, Kai Yang, Quan-su Li. Optimization of GaAs-based 940 nm infrared light emitting diode with dual-junction design. Optoelectronics Letters, , 15(2): 113‒116 https://doi.org/10.1007/s11801-019-8113-6

References

[1]
ZinovchukA V, MalyutenkoO Y, MalyutenkoV K, PodoltsevA D, VilisovA A. J. Appl. Phys., 2008, 104: 033115
CrossRef Google scholar
[2]
XuDP, D’SouzaM, ShinJC, MawstLJ, BotezD. J. Crystal Growth, 2008, 310: 2370
CrossRef Google scholar
[3]
KimD K, LeeH J, AnW-C, KimH G, KwacL K. J. Korean Phys. Society, 2018, 72: 1020
CrossRef Google scholar
[4]
LuH D, ZhangB, GuoF M. Opt Quant Electron, 2016, 48: 181
CrossRef Google scholar
[5]
CevherZ, FolkesP A, HierH S, VanMilB L, ConnellyB C, BeckW A, RenY H. J. Appl. Phys., 2018, 123: 161512
CrossRef Google scholar
[6]
BanD, LuoH, LiuH C, WasilewskiZ R, BuchananM. IEEE Photonics Technol. Lett., 2005, 17: 1477
CrossRef Google scholar
[7]
DasD, GhadiH, TongbramB, SinghSM, ChakrabartiS. J. Lumin., 2017, 192: 277
CrossRef Google scholar
[8]
Cortes-MestizoI E, BrionesE, Yee-RendónCM, Zamora PeredoL, Espinosa-VegaLI, DroopadR, Méndez-GarcíaV H. J. Crystal Growth, 2017, 477: 59
CrossRef Google scholar
[9]
HerreraR A, Alvarez OcampoC A. J. Nonlin. Optical Phys. & Mate., 2017, 26: 1750031
CrossRef Google scholar
[10]
WaltherT, KrysaAB. J. Microscopy, 2005, 268: 298
CrossRef Google scholar
[11]
KimD K, LeeH J. J. Nanoscien. and Nanotechn., 2018, 18: 2014
CrossRef Google scholar
[12]
KawazuT, NodaT, SakumaY. Appl. Phys. Lett., 2018, bd112: 072101
CrossRef Google scholar
[13]
SoutoJ, PuraJ L, TorresA, JiménezJ, BettiatiM, LaruelleF J. Microelectron. Reliability, 2016, 64: 627
CrossRef Google scholar
[14]
ZhangZ Z, FuZ L, GuoX G, CaoJ C. Chin. Phys. B, 2018, 27: 030701
CrossRef Google scholar
[15]
WuC-H, WuC-H. Appl. Phys. Lett., 2014, 105: 171104
CrossRef Google scholar
[16]
ThomaJ, LiangB L, LewisL, HegartyS P, HuyetG, HuffakerD L. Appl. Phys. Lett., 2013, 102: 113101
CrossRef Google scholar

This work has been supported by the National Key Research and Development Program of China (No. 2017YFB0403101), and the National Natural Science Foundation of China (No.61474096).

Accesses

Citations

Detail

Sections
Recommended

/