VCSEL-based Raman technology for extended reach time and reference frequency transfer systems

G. M. Isoe, E. K. Rotich, T. B. Gibbon

Optoelectronics Letters ›› , Vol. 15 ›› Issue (2) : 139-143.

Optoelectronics Letters ›› , Vol. 15 ›› Issue (2) : 139-143. DOI: 10.1007/s11801-019-8108-3
Article

VCSEL-based Raman technology for extended reach time and reference frequency transfer systems

Author information +
History +

Abstract

This paper experimentally demonstrates a low-cost energy efficient alternative technique for long reach transfer of accurate reference frequency (RF) clock signals for extended reach RF distribution systems. This is achieved by adopting distributed forward Raman amplification and vertical cavity surface emitting laser (VCSEL) technology. A class 10G VCSEL is directly modulated with a 2 GHz RF clock signal. By exploiting a forward Raman pump with the flat gain of 8.6 dB, a 100.8-km-long standard single mode fiber (SMF) RF clock distribution is experimentally achieved. A maximum phase noise of −117.66 dBc/Hz at offset frequency of 100 kHz and an RF clock jitter (RMS) of 5.36 ps is experimentally measured for 100.8-km-long fiber transmission without forward Raman amplification. However, with the adoption of forward Raman amplification, the measured phase noise and RMS improves to −86.59 dBc/Hz and 1.7 ps, respectively. Forward Raman pumping offers distributed high flat gain over a wide spectra range (over 35.5 nm), while VCSELs offer cost effective broadband signal distribution, therefore keeping the network optics investment low.

Cite this article

Download citation ▾
G. M. Isoe, E. K. Rotich, T. B. Gibbon. VCSEL-based Raman technology for extended reach time and reference frequency transfer systems. Optoelectronics Letters, , 15(2): 139‒143 https://doi.org/10.1007/s11801-019-8108-3

References

[1]
ZhouJ, YuC, MohanG, KimH. Journal of Lightwave Technology, 2016, 34: 3790
CrossRef Google scholar
[2]
ShaoY, ChenF, WangA, LuoY, ChenL. Optik — International Journal for Light and Electron Optics, 2017, 146: 63
CrossRef Google scholar
[3]
IsoeG M, WassinS, GamathamR R G, LeitchA W R, GibbonT B. Journal of Modern Optics, 2017, 64: 2336
CrossRef Google scholar
[4]
TatumJ A, GazulaD, GrahamL A, GuenterJ K, JohnsonR H, KingJ, KocotC, LandryG D, LyubomirskyI, MacInnesA N, ShawE M, BalemarthyK, ShubochkinR, VaidyaD, YanM, TangF. Journal of Lightwave Technology, 2015, 33: 727
CrossRef Google scholar
[5]
SzwedaR. III-Vs Review, 2006, 19: 32
[6]
MichalzikR. VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, 2012,
[7]
CaballeroA, GuerreroN, AmayaF, AmayaF, ZibarD, MonroyI T. Long Reach and Enhanced Power Budget DWDM Radio-Over-Fibre Link Supported by Raman Amplification and Coherent Detection, 2009,
[8]
LiS, WangC, LuH, ZhaoJ. IEEE Photonics Journal, 2017, 9: 7202608
[9]
GuptaA S, HanjuraA K, MathurB S. Proceedings of the IEEE, 1991, 79: 973
CrossRef Google scholar
[10]
JespersenJ. Survey of Time and Frequency Dissemination Techniques, 1970,
CrossRef Google scholar
[11]
IsoeG M, WassinS, GamathamR R G, LeitchA W R, GibbonT B. Proc. SPIE 10129, Optical Metro Networks and Short-Haul Systems IX, 101290F, 2017,
[12]
IsoeG, MuguroK, WaswaD, OsiemoD, KiruiE, CherutoiH. Forward Raman Amplification Characterization in Optical Networks, 2014, 251
[13]
IsoeG M, MuguroK M, WaswaD W, KipnooE K R, GibbonT B, LeitchA W R. Effects of Double Rayleigh Scattering in Fibre Raman Amplifier at Different Pump Configurations, 2013,
[14]
IsoeG M, MuguroK M, WaswaD W, KipnooE K R, GibbonT B, LeitchA W R. Performance Comparison of SMF-Reach and SMF-RS Optical Fibres for Raman Amplification, 2014,
[15]
G. M. Isoe, E. K. Rotich, D. K. Boiyo, R. R. G. Gamatham, A. W. R. Leitch, T. B. Gibbon, K. M. Muguro and D. W. Waswa, Noise Figure and Pump Reflection Power in SMF-Reach Optical Fibre for Raman Amplification, AFRICON, 1 (2015).
[16]
I. G. s. E. S. T. Force. IEEE Standard 802.3.bm, 2017,
[17]
ZhuB, LengL, NelsonL, Gruner-NielsenL, QianY, BromageJ, StulzS, KadoS, EmoriY, NamikiS, GaardeP, JudyA, PalsdottirB, LingleR LJr.. 3.2 Tb/s (80×42.7 Gb/s) Transmission over 20×100km of Non-Zero Dispersion Fiber with Simultaneous C+ L-Band Dispersion Compensation, 2002,
[18]
PelouchW S. Journal of Lightwave Technology, 2016, 34: 6
CrossRef Google scholar
[19]
BromageJ. Journal of Lightwave Technology, 2004, 22: 79
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/