Optical properties of an Er3+-doped phosphate glass waveguide formed by single-energy H+ ion implantation

Jing-yi Chen , Sen Yan , Rui-lin Zheng , Liao-lin Zhang , Hai-tao Guo , Chun-xiao Liu

Optoelectronics Letters ›› : 104 -107.

PDF
Optoelectronics Letters ›› : 104 -107. DOI: 10.1007/s11801-019-8103-8
Article

Optical properties of an Er3+-doped phosphate glass waveguide formed by single-energy H+ ion implantation

Author information +
History +
PDF

Abstract

In this work, we report the fabrication of an optical waveguide by single-energy H+ ion implantation in the Er3+-doped phosphate glass. The ion implantation conditions are with energy of 0.4 MeV and a fluence of 8.0×1016 ions/cm2. The dark mode spectrum of the waveguide structure was measured by the prism coupling experiment. The refractive index change along with the penetration depth was fitted by using the reflectivity calculation method (RCM). Finally, the calculated near-field light intensity distribution shows superior waveguide properties, which demonstrates its promising potentials for compact optical integrated devices.

Cite this article

Download citation ▾
Jing-yi Chen, Sen Yan, Rui-lin Zheng, Liao-lin Zhang, Hai-tao Guo, Chun-xiao Liu. Optical properties of an Er3+-doped phosphate glass waveguide formed by single-energy H+ ion implantation. Optoelectronics Letters 104-107 DOI:10.1007/s11801-019-8103-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhangM, WangC, RebecaC, Shams-AnsariA, LoncarM. Optica, 2017, 4: 1536

[2]

RíosC, StegmaierM, HosseiniP, WangD, SchererT, Wright CD, BhaskaranH, Pernice WolframH P. Nature Photonics, 2015, 9: 725

[3]

WangL, Haunhorst ChristianE, Volk MartinF, ChenF, KipD. Optics Express, 2015, 23: 30188

[4]

MaL-N, TanY, Ghorbani-AslM, BoettgerR, KretschmerS, ZhouS, HuangZ, KrasheninnikovA V, ChenF. Nanoscale, 2017, 9: 11027

[5]

WangX-L, ChenF, WangK-M, LuQ-M, ShenD-Y, NieR. Applied Physics Letters, 2004, 85: 1457

[6]

HuH, RickenR, SohlerW. Applied Physics B, 2010, 98: 677

[7]

TervonenA, HonkanenS, West BrianR. Optical Engineering, 2011, 50: 071107

[8]

TanY, ZhangC, ChenF, LiuQ F, JaqueD, LuQ-M. Applied Physics B, 2011, 103: 837

[9]

ChenF, Vázquez deJ R A. Laser and Photonics Reviews, 2014, 8: 251

[10]

ChenF. Laser and Photonics Reviews, 2012, 6: 622

[11]

VázquezG V, ValienteR, Gómez-SalcesS, Flores-RomeroE, RickardsJ, Trejo-LunaR. Optics and Laser Technology, 2016, 79: 132

[12]

BányászI, ZolnaiZ, FriedM, BerneschiS, PelliS, Nunzi-ContiG. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2014, 326: 81

[13]

TanY, ChenF, WangL, WangK-M, LuQ-M. Journal of the Korean Physical Society, 2008, 52: S80

[14]

WangY, ShenY, ZhengR-L, ShenJ-P, GuoH-T, LiuC-X. Results in Physics, 2018, 10: 200

[15]

WangY, ShenX-L, ZhengR-L, GuoH-T, LvP, LiuC-X. Journal of the Korean Physical Society, 2018, 72: 765

[16]

Bradley JonathanD B, PollnauM. Laser and Photonics Reviews, 2011, 5: 368

[17]

DesirenaH, De la RosaE, Diaz-TorresL A, KumarG A. Optical Materials, 2006, 28: 560

[18]

ChenC, HeR-Y, TanY, WangB, AkhmadalievS, ZhouS-Q, Javier RV D A, HuL-L, ChenF. Optical Materials, 2016, 51: 185

[19]

LiuC-X, ShenX-L, GuoH-T, Li WeiN, WeiW. Optik, 2017, 131: 132

[20]

Ziegler J. F., SRIM-The Stopping and Range of Ions in Matter, https://doi.org/www.srim.org.

[21]

ChandlerP J, LamaF L. Optica Acta, 1986, 33: 127

[22]

Rsoft Design Group, Computer software BeamPROP ver sion 8.0, https://doi.org/www.rsoftdesign.com.

[23]

TanY, Aldana Vázquez de JavierR, ChenF. Optical Engineering, 2014, 53: 107109

[24]

WangQ-Y, LiX-H, ZhangJ-Y. Optik, 2018, 164: 721

AI Summary AI Mindmap
PDF

84

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/