Optical spectra of Eu2+ ion doped KMgF3 single crystals grown by Bridgman method

Xu-dong Shi , Hai-ping Xia , Jian-xu Hu , Jian-li Zhang , Yong-sheng Zhu , Bao-jiu Chen

Optoelectronics Letters ›› : 26 -30.

PDF
Optoelectronics Letters ›› : 26 -30. DOI: 10.1007/s11801-019-8100-y
Optoelectronics Letters

Optical spectra of Eu2+ ion doped KMgF3 single crystals grown by Bridgman method

Author information +
History +
PDF

Abstract

High-quality KMgF3 single crystal containing 0.5 mol% europium (Eu) was prepared by an improved Bridgman method. X-ray diffraction (XRD), photoluminescence spectra and fluorescence lifetime were measured. The results indicate the reduction of Eu3+ to Eu2+ in the KMgF3 single crystal. Under the excitation of 259 nm, 370 nm and 394 nm, the sample has two distinct emissions of Eu2+:4f7→4f7(~363 nm) and 4f65d1→4f7 (~440 nm). The substitution site for Eu ion is confirmed. The optical property investigation result shows that the Eu2+ doped KMgF3 single crystal may be used as potential laser media and related materials for optical devices.

Cite this article

Download citation ▾
Xu-dong Shi, Hai-ping Xia, Jian-xu Hu, Jian-li Zhang, Yong-sheng Zhu, Bao-jiu Chen. Optical spectra of Eu2+ ion doped KMgF3 single crystals grown by Bridgman method. Optoelectronics Letters 26-30 DOI:10.1007/s11801-019-8100-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ZhaoS., HouY., PeiX., XuZ., XuX.. J. Alloys Compd., 2004, 368: 298

[2]

RajaA., AnnaduraiG., DanielD. J., RamasaryP.. J. Alloys Compd., 2017, 727: 215

[3]

HuangX. Y., YuD. C., ZhangQ. Y.. J. Appl. Phys., 2009, 106: 663

[4]

ZengS., XiaoJ., YangQ., HaoJ.. J. Mater Chem., 2012, 22: 9870

[5]

ZhangJ., HuaZ., WenS.. J. Alloys Compd., 2015, 637: 70

[6]

QiaoY., ChenD., RenJ., WuB., QiuJ., AkaiT.. J. Appl. Phys., 2008, 103: 767

[7]

PengM., HongG.. J. Lumin., 2007, 127: 735

[8]

LiY., PanK., WangG., FanN., MiaoX.. J. Mater. Res., 2011, 26: 2867

[9]

ShimamuraK., FujitaT., SatoH., BensalahA., SarukuraN., FukudaT.. Jpn J. Appl. Phys., 2000, 39: 6807

[10]

DarabontA., NeamţuC., FǎrcaşS.I., BorodiG.. J. Cryst. Growth, 1996, 169: 89

[11]

FengZ., XiaH., WangC.. Chem. Phy. Lett., 2016, 652: 68

[12]

WangJ., JingX., YanC., LinJ., LiaoF.. J. Lumin., 2006, 121: 57

[13]

BabyT., NampooriV. P. N.. FSolid State Commun., 1992, 81: 367

[14]

KuoT. W., ChenT. M., LiuW. R.. Opt. Express, 2010, 18: 8187

[15]

DongS., YeS., WangL., ChenX., YangS., ZhaoY., WangJ., JingX., ZhangQ.. J. Alloys Compd., 2014, 610: 402

[16]

SommerdijkJ. L., VerstegenJ. M. P. J., BrilA.. J. Lumin., 1974, 8: 502

[17]

MahlikS., WiśniewskiK., GrinbergM., SeoH. J.. Opt. Mater., 2011, 33: 996

[18]

WinskiewskiK., MahlikS., GrinbergM., SeoH. J.. J. Lumin., 2011, 131: 306

[19]

KobayasiT., MroczkowskiS., OwenJ. F., BrixnerL. H.. J. Lumin., 1980, 21: 247

[20]

TsuboiT., SilfstenP.. J. Phy. Condens. Mat., 1991, 3: 9163

[21]

ZhuG., ShiY., MikamiM., ShimomuraY., WangY.. Cryst. Eng. Comm., 2014, 16: 6089

[22]

MahlikS., WisniewskiK., GrinbergM., SeoH. J.. Journal of Non-Crystalline Solids, 2010, 356: 1888

[23]

ShiC., YeZ., YaoJ., CaoZ., SunJ.. J. Alloys Compd., 1993, 192: 48

[24]

PeiZ., QiangS., ZhangJ.. J. Alloys Compd., 1993, 198: 51

[25]

SuQ., LiangH., HuT., YeT., LiuT.. J. Alloys Compd., 2002, 344: 132

[26]

PengM., PeiZ., HongG., QiangS.. J. Mater. Chem., 2003, 13: 1202

AI Summary AI Mindmap
PDF

71

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/