Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid

Xue-qin Lei, Yan-chao Xu, Ya-ting Yu, Bao-jin Peng

Optoelectronics Letters ›› , Vol. 15 ›› Issue (1) : 43-47.

Optoelectronics Letters ›› , Vol. 15 ›› Issue (1) : 43-47. DOI: 10.1007/s11801-019-8087-4
Optoelectronics Letters

Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid

Author information +
History +

Abstract

In this paper, magnetic fluid (MF), a new type of optical functional nanomaterial with interesting optical characteristics under the external magnetic field, is adopted to form a novel fiber-optic magnetic field sensor. The proposed sensor is based on Mach-Zehnder interferometer (MZI) and has a multimode-singlemode-multimode (MSM) fiber structure. The MSM structure was fabricated by splicing a section of uncoated single mode fiber (SMF) between two short sections of multimode fibers (MMFs) using a fiber fusion splicer. The magnetic field sensing probe was made by inserting the fiberoptic structure in an MF-filled capillary tube. Variations in an external magnetic field is seen to cause changes in the refractive index of MF. This tunable change in the refractive index with magnetic field strengths between 0.6 mT to 21.4 mT produces a shift in the peak position of the wavelength. The shift of the valley wavelength with magnetic field intensity has a good linearity of up to 99.6%. The achieved sensitivity of the proposed magnetic field sensor is 0.123 nm/mT, which is improved by several folds compared with those of most of the other reported MF-based magnetic field sensors. Furthermore, we build the corresponding circuit-based measurement system, and the experimental results show that the voltage change indirectly reflects the change of the external magnetic field strength. Therefore, this provides the potential to fiber-based magnetic field sensing applications.

Cite this article

Download citation ▾
Xue-qin Lei, Yan-chao Xu, Ya-ting Yu, Bao-jin Peng. Fiber in-line magnetic field sensor based on Mach-Zehnder interferometer integrated with magnetic fluid. Optoelectronics Letters, , 15(1): 43‒47 https://doi.org/10.1007/s11801-019-8087-4

References

[1]
ChenY., HanQ., LiuT., LanX., XiaoH.. Opt. Lett., 2013, 38: 3999
CrossRef Google scholar
[2]
GaoR., JiangY., AbdelazizS.. Opt. Lett., 2013, 38: 1539
CrossRef Google scholar
[3]
LeiX., ChenJ., ShiF., ChenD., RenZ., PengB.. Opt. Commun., 2016, 374: 76
CrossRef Google scholar
[4]
YangM., DaiJ., ZhouC., JiangD.. Opt. Commun., 2009, 17: 20777
[5]
ZhaoY., WuD., LvR.-Q., YingY.. IEEE Trans. Magn., 2014, 50: 4600205
[6]
ZhaoY., LvR.-Q., WangD., WangQ.. IEEE Trans. Instrum. Meas., 2014, 63: 2210
CrossRef Google scholar
[7]
LvR.Q., ZhaoY., WangD., WangQ.. IEEE Photon. Technol. Lett., 2014, 26: 217
CrossRef Google scholar
[8]
YangJ., DongX., ZhengY., NiK., ChanC. C., ShumP. P.. IEEE Sensors Journal, 2015, 15: 1372
CrossRef Google scholar
[9]
ZuP., ChanC. C., KohG. W., LewW. S., JinY., LiewH. F.. Sens. Actuators B, Chem., 2014, 191: 19
CrossRef Google scholar
[10]
ZuP., ChanC. C., GongT. X., JinY. X., WongW. C., DongX. Y.. Appl. Phys. Lett., 2012, 101: 241118-1
CrossRef Google scholar
[11]
WangH., PuS., WangN., DongS., HuangJ.. Opt. Lett., 2013, 38: 3765
CrossRef Google scholar
[12]
ZuP., ChanC. C., LewW. S., HuL., JinY., LiewH. F.. IEEE Photon. Technol. Lett., 2012, 4: 491
[13]
MiaoY., WuJ., LinW., ZhangK., SongB., ZhangH.. Proc. SPIE 9157, 2014,
[14]
WuJ., MiaoY., SongB., ZhangK., LinW., ZhangH., LiuB., YaoJ.. Applied Optics, 2014, 53: 5037
CrossRef Google scholar
[15]
PuS. L., DongS. H.. IEEE Photonics Journal, 2014, 6: 1
[16]
WuJ., MiaoY., LinW., SongB., ZhangK., ZhangH.. J. Opt., 2014, 16: 075705
CrossRef Google scholar
[17]
DengM., LiuD. H., LiD. C.. Sensors and Actuators A: Physical, 2014, 211: 55
CrossRef Google scholar
[18]
YinB., LiY., LiuZ. B., FengS., BaiY., XuY.. Optics & Laser Technology, 2016, 80: 16
CrossRef Google scholar
[19]
LeiX.Q., PengB.J., ChenD.R., ShiQ.G., MaX.W.. IEEE. Sens. J., 2016, 16: 4
CrossRef Google scholar
[20]
WangY., LiY., LiaoC., WangD. N., YangM., LuP.. IEEE Photon. Technol. Lett., 2010, 22: 39
CrossRef Google scholar
[21]
MiaoY., WuJ., LinW., ZhangK., YuanY., SongB.. Opt. Express, 2013, 21: 29914
CrossRef Google scholar
[22]
QiuS. J., LiuQ., XuF., LuY. Q.. Sensor Actuat APhys., 2014, 210: 95
CrossRef Google scholar
[23]
WuJ., MiaoY., LinW., ZhangK., SongB., ZhangH.. IEEE Photon. Technol. Lett., 2012, 4: 2095
[24]
WangQ., LiuX., XiaJ., ZhaoY.. IEEE Sensor Journal, 2015, 64: 2005

This work has been supported by the National Natural Science Foundation of China (No.11274278).

Accesses

Citations

Detail

Sections
Recommended

/