Plasmonics refractive index sensor based on tunable ultra-sharp Fano resonance

Zi-hua Liu, Li-zheng Ding, Jia-pu Yi, Zhong-chao Wei, Jian-ping Guo

Optoelectronics Letters ›› , Vol. 14 ›› Issue (6) : 421-424.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (6) : 421-424. DOI: 10.1007/s11801-018-8071-4
Article

Plasmonics refractive index sensor based on tunable ultra-sharp Fano resonance

Author information +
History +

Abstract

In this paper, a plasmonics refractive index sensor with the semiring-stub system coupled to a bus waveguide is proposed. The structure can achieve wavelength band tunable and ultra-sharp Fano resonance. The coupling mechanism between the bright mode and dark mode is investigated in detail, and apparent plasmon induced transparency (PIT) is realized on the resonance wavelength. The full width at half maximum (FWHM) of the resonant wavelength is modulated by adjusting the coupled distance. The sensitivity and figure of merit (FOM) of the proposed sensor can reach up to 600 nm/RIU and 120 on the visible region, respectively, and this performance can be helpful for designing the photonic integrated circuit and optical communication, in addition, it can be applied for bio-sensing.

Cite this article

Download citation ▾
Zi-hua Liu, Li-zheng Ding, Jia-pu Yi, Zhong-chao Wei, Jian-ping Guo. Plasmonics refractive index sensor based on tunable ultra-sharp Fano resonance. Optoelectronics Letters, , 14(6): 421‒424 https://doi.org/10.1007/s11801-018-8071-4

References

[1]
DuanX. F., HuangY., CuiY., WangJ. F., LieberC. M.. Nature, 2001, 409: 66
CrossRef Google scholar
[2]
McNabS. J., MollN., VlasovY. A.. Optics Express, 2003, 11: 2927
CrossRef Google scholar
[3]
YiX., TianJ., YangR.. European Physical Journal D, 2018, 72: 60
CrossRef Google scholar
[4]
HayashiS., NesterenkoD. V., SekkatZ.. Applied Physics Express, 2015, 8: 022201
CrossRef Google scholar
[5]
ChenJ. Y., HeL., WangJ. P., LiM.. Phys. Rev. Applied, 2017, 7: 021001
CrossRef Google scholar
[6]
RajoraS., RajputS. K.. Journal of Nanoelectronics & Optoelectronics, 2017, 12: 136
CrossRef Google scholar
[7]
SunC., RongK., GanF., ChuS., GongQ., ChenJ., SunC., RongK., GanF., ChuS.. Applied Physics Letters 101105, 2017, 111: 101105
CrossRef Google scholar
[8]
MemmiH., BensonO., SadofevS., KalusniakS.. Physical Review Letters, 2017, 118: 126802
CrossRef Google scholar
[9]
HarrisS. E.. Physics Today, 1997, 50: 36
CrossRef Google scholar
[10]
YunB., HuG., JiaweiC., CuiY.. Materials Research Express, 2014, 1: 036201
CrossRef Google scholar
[11]
RenG., LiuH., JianS., QiY., GaoY., LianY.. Applied Optics, 2015, 54: 3918
CrossRef Google scholar
[12]
HanZ., BozhevolnyiS. I.. Optics Express, 2011, 19: 3251
CrossRef Google scholar
[13]
ChenJ., LiZ., YueS., XiaoJ., GongQ.. Nano Letters, 2012, 12: 2494
CrossRef Google scholar
[14]
A. Yariv,IEEE Journal of Quantum Electronics 9, 919 (1973).
[15]
StreiferW.. Electronics Letters, 1987, 23: 315
CrossRef Google scholar
[16]
ZhaoM. Z., LiH. J., HeZ. H., ChenZ. Q., XuH., ZhengM. F.. Scientific Reports, 2017, 7: 7
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61774062, 11674107, 61475049 and 11674109), and the Natural Science Foundation of Guangdong Province in China (No.2016A030313443).

Accesses

Citations

Detail

Sections
Recommended

/