Thin-core fiber-optic biosensor for DNA hybridization detection

Shao-Cong Long , Yan-Ru Zhu , Mu-Yun Hu , Yi-Fan Qi , Yun-Rui Jiang , Bo Liu , Xu Zhang

Optoelectronics Letters ›› : 346 -349.

PDF
Optoelectronics Letters ›› : 346 -349. DOI: 10.1007/s11801-018-8054-5
Article

Thin-core fiber-optic biosensor for DNA hybridization detection

Author information +
History +
PDF

Abstract

A real-time label-free DNA biosensor based on thin-core fiber (TCF) interferometer is demonstrated experimentally. The proposed biosensor is constructed by splicing a TCF between two segments of single mode fibers (SMFs) and integrated into a microfluidic channel. By modifying the TCF surface with monolayer poly-l-lysine (PLL) and single-stranded deoxyribonucleic acid (ssDNA) probes, the target DNA molecules can be captured in the microfluidic channel. The transmission spectra of the biosensor are measured and theoretically analyzed under different biosensing reaction processes. The results show that the wavelength has a blue-shift with the process of the DNA hybridization. Due to the advantages of low cost, simple operation as well as good detection effect on DNA molecules hybridization, the proposed biosensor has great application prospects in the fields of gene sequencing, medical diagnosis, cancer detection and environmental engineering.

Cite this article

Download citation ▾
Shao-Cong Long, Yan-Ru Zhu, Mu-Yun Hu, Yi-Fan Qi, Yun-Rui Jiang, Bo Liu, Xu Zhang. Thin-core fiber-optic biosensor for DNA hybridization detection. Optoelectronics Letters 346-349 DOI:10.1007/s11801-018-8054-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KleinjungF, BierF F, WarsinkeA, SchellerF W. Analytica Chimica Acta, 1997, 350: 51

[2]

SchmidtPM, LehmannC, MatthesE, BierFF. Biosensors & Bioelectronics, 2002, 17: 1081

[3]

CandianiA, BertucciA, GiannettiS, KonstantakiM, ManicardiA, PissadakisS, CucinottaA, CorradiniR, SelleriS. Journal of Biomedical Optics, 2013, 18: 057004

[4]

LongF, WuS, HeM, TongT, ShiH. Biosens & Bioelectron, 2011, 26: 2390

[5]

HanS, ZhouX, TangY, HeM, ZhangX, ShiH, XiangY. Biosensors & Bioelectronics, 2016, 6: 265

[6]

KantR, TabassumR, GuptaB D. Biosensors & Bioelectronics, 2018, 99: 637

[7]

DingZW, LangTT, WangY, ZhaoCL. Journal of Lightwave Technology, 2017, 35: 4734

[8]

SongBB, ZhangH, LiuB, LinW, WuJ. Biosensors & Bioelectronics, 2017, 81: 151

[9]

ChandraS, BharadwajR, MukherjiS. Sensors and Actuators B Chemical, 2017, 240: 443

[10]

TanYC, JiWB, MamidalaV, ChowKK, TjinSC. Sensors and Actuators B, 2014, 196: 260

[11]

Salceda-DelgadoG, Martinez-RiosA, Selvas-AguilarR, Álvarez-TamayoR I, Castillo-GuzmanA, Ibarra-EscamillaB, Durán-RamírezV M, Enriquez-GomezL F. Sensors, 2017, 17: 1259

[12]

XiaoS, WuY, DongY, XiaoH, JiangY, JinW, LiH, JianS. Optics & Laser Technology, 2017, 96: 254

[13]

ChenX, ZhangL, ZhouK, DaviesE, SugdenK, BennionI, HughesM, HineA. Optics Letters, 2007, 32: 2541

[14]

DengD, FengW, WeiJ, QinX, ChenR. Applied Surface Science, 2017, 423: 492

[15]

RuanJ, HuLR, LuAS, XuHG. IEEE Photonics Technology Letters, 2017, 29: 1364

[16]

MengJ, ZeMW, ZhongZZ, ZhangYX. Microwave & Optical Technology Letters, 2017, 59: 53

[17]

BaoW, HuN, QiaoX, RongQ, WangR, YangH, YangT, SunA. IEEE Photonics Technology Letters, 2016, 28: 2245

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/