Steady state multiple dark spatial solitons in the biased photorefractive-photovoltaic crystals

Yu-Hong Zhang, Wei Su, Cun-Li Duan, Ai-Ling Tian

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 367-371.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 367-371. DOI: 10.1007/s11801-018-8045-6
Article

Steady state multiple dark spatial solitons in the biased photorefractive-photovoltaic crystals

Author information +
History +

Abstract

We theoretically study the evolution of dark solitons in the biased photorefractive-photovoltaic crystal by using beam propagation method (BPM). We find that when the absolute value of the extra bias field is less than the photovoltaic field, the dark screening-photovoltaic (SP) solitons can be observed. The initial width of the dark notch at the entrance face of the crystal is a key parameter for generating an sequence of dark coherent solitons. If the initial width of the dark notch is small, only a fundamental soliton or Y-junction soliton pair is generated. When the initial width of the dark notch is increased, the dark notch tends to split into an odd (or even) number of multiple dark solitons, which realizes a progressive transition from the low-order solitons to a sequence of higher-order solitons.

Cite this article

Download citation ▾
Yu-Hong Zhang, Wei Su, Cun-Li Duan, Ai-Ling Tian. Steady state multiple dark spatial solitons in the biased photorefractive-photovoltaic crystals. Optoelectronics Letters, , 14(5): 367‒371 https://doi.org/10.1007/s11801-018-8045-6

References

[1]
KonarS, AnjanB. Optical Materials, 2013, 35: 2581
CrossRef Google scholar
[2]
KeshavarzA, KamranfardM. Optik, 2011, 122: 235
CrossRef Google scholar
[3]
KattiA, YadavRA. Physical Letters A, 2017, 381: 166
CrossRef Google scholar
[4]
KonarS, ShekharS, HongW-P. Optics and Laser Technology, 2010, 42: 1294
CrossRef Google scholar
[5]
JiX-m, JiangQ-c, LiuJ-s. Optik, 2011, 122: 1848
CrossRef Google scholar
[6]
HuangJG, ChristianJM, McDonaldGS. Journal of Nonlinear Optics Physics & Materials, 2017, 26: 1750009
CrossRef Google scholar
[7]
Luk-q, GuoJ-b, LiK-h, Chenw-j, SunT-t, YaoF-x, NiuP-j, XuJ-j. Optical Materials, 2012, 34: 1277
CrossRef Google scholar
[8]
HuiJ-l, LuK-q, ZhangB-j, ZhangJ, XingH-y. Optics Laser Technology, 2015, 75: 57
CrossRef Google scholar
[9]
HongW-P, JungY-D. Physics Letters A, 2015, 379: 676
CrossRef Google scholar
[10]
LiZ, ShiS, RenX-p, WangH. Journal of Nonlinear Optics Physics & Materials, 2015, 24: 1550024
CrossRef Google scholar
[11]
HuS-m, MaX-k, LuD-q, ZhengY-z, HuW. Physical Review A, 2012, 85: 043826
CrossRef Google scholar
[12]
HuS-m, LuD-q, MaX-k, GuoQ, HuW. European Physics Letters, 2012, 98: 14006
CrossRef Google scholar
[13]
LiuJ-s. Chinese Journal of Laser B, 2001, 10: 347
[14]
ChenZ-g, MordechaiS, ChristodoulidesD N. Reports on Progress in Physics, 2012, 75: 086401
CrossRef Google scholar
[15]
ZhaoM-Z, ZhangG-y, ChenG-z, ZhangX-q. Optik, 2016, 127: 10084
CrossRef Google scholar
[16]
ZhangY-h, LuK-q, GuoJ-b, LongX-w. Pramana-Journal of Physics, 2012, 78: 265
CrossRef Google scholar
[17]
ZhangM-z, HuoG-w, DuanZ-l, HuiZ-q, ZengX-m. Journal of Nonlinear Optical Physics & Materials, 2013, 22: 1350032
CrossRef Google scholar
[18]
ZhangY-h, LuK-q, GuoJ-b, LiK-h, LiuB-y. European Physical Journal D, 2012, 66: 65
CrossRef Google scholar
[19]
ZhangY-h, HuX-h, LuK-q, LiuB-y, LiuW-y, GuoR-l. Journal of Optical Technology, 2013, 80: 135
CrossRef Google scholar
[20]
ChristodoulidesD N, CarvalhoM I. Journal of the Optical Society of America B-Optical Physics, 1995, 12: 1628
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.10674176), and the National Foundation of Shaanxi Provincial Department of Education (No.17JK0389).

Accesses

Citations

Detail

Sections
Recommended

/