Optical properties of Cr3+ doped Na5Lu9F32 single crystals grown by the Bridgman method

Zhi-Wei Zhao , Hai-Ping Xia , Jian-Xu Hu , Jian-Li Zhang , Yong-Sheng Zhu , Bao-Jiu Chen

Optoelectronics Letters ›› : 355 -358.

PDF
Optoelectronics Letters ›› :355 -358. DOI: 10.1007/s11801-018-8043-8
Article

Optical properties of Cr3+ doped Na5Lu9F32 single crystals grown by the Bridgman method

Author information +
History +
PDF

Abstract

The growth of Na5Lu9F32 single crystals doped with Cr3+ ions in 0.1 mol%, 0.2 mol% and 0.5 mol% concentrations by Bridgman method was reported. The optical absorption and luminescence spectra decisively demonstrate that the Cr dopant enters Na5Lu9F32 as Cr3+. Fluorescence emission at wavelengths of 418 nm, 444 nm, 653 nm and 678 nm can be observed under the excitation of 372 nm and the fluorescence lifetime at 418 nm was measured to be ∼10.31 μs. The possible crystal sites for Cr3+ ions in Na5Lu9F32 single crystal were discussed, and the lattice parameter Dq, Racach parameters B and C were estimated.

Cite this article

Download citation ▾
Zhi-Wei Zhao, Hai-Ping Xia, Jian-Xu Hu, Jian-Li Zhang, Yong-Sheng Zhu, Bao-Jiu Chen. Optical properties of Cr3+ doped Na5Lu9F32 single crystals grown by the Bridgman method. Optoelectronics Letters 355-358 DOI:10.1007/s11801-018-8043-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

StoepplerG, ParisiD, TonelliM, EichhornM. Opt. Lett., 2012, 37: 1163

[2]

RatnakaramY C, BabuS, BharatL K, NayakC. J. Lumin., 2016, 175: 57

[3]

XuJ, KongM, LinA, SongY, HanJ, XuZ, WuB, GaoS, DengN. Opt. Lett., 2017, 42: 1664

[4]

AggarwalR, SanchezA, FaheyR, StraussA. Appl. Phys. Lett., 1986, 48: 1345

[5]

ChenD, ChenX, LiX, GuoH, LiuS, LiX. Opt. Lett., 2017, 42: 4950

[6]

ZhangL, HuangY, SunS, YuanF, LinZ, WangG. J. Lumin., 2016, 169: 161

[7]

DemirbasU, WangJ, PetrichG S, NabanjaS, BirgeJ R, KolodziejskiL A, KärtnerF X, FujimotoJ G. Appl. Opt., 2017, 56: 3812

[8]

KunpengL, YanlongS, LiY, HongweiC, ShaowuC, MengmengT, AipingY. Opt. Commun., 2017, 405: 233

[9]

HuangC, ZhangG, WeiY, HuangL. Opt. Commun., 2006, 260: 248

[10]

TangQ, XiaH, ShengQ, HeS, ZhangJ, ChenB. J. Mod. Opt., 2017, 64: 2238

[11]

HeS, XiaH, ZhangJ, ZhuY, ChenB. Sci. Rep., 2017, 7: 8751

[12]

ShengQ-g, XiaH-p, TangQ-y, HeS-n, ZhangJ-l, ChenB-j. Optoelectron. Lett., 2017, 13: 201

[13]

ZhouT, ZhangL, YangH, QiaoX, LiuP, TangD, ZhangJ. J. Am. Ceram. Soc., 2015, 98: 2459

[14]

YeP, ZhuS, LiZ, YinH, ZhangP, FuS, ChenZ. Opt. Express, 2017, 25: 5179

[15]

ZhouT, ZhangL, ZhangJ, YangH, LiuP, ChenY, QiaoX, TangD. Opt. Mater., 2015, 50: 11

[16]

PayneS A, ChaseL L, KrupkeW F. J. Chem. Phys., 1987, 86: 3455

[17]

HeS, XiaH, ZhangJ, ZhuY, ChenB. Sci. Rep., 2017, 7: 8751

[18]

HaipingX, JinhaoW, HongyinW, ZhangJ, ZhangY, TiefengX. Rare Metals, 2006, 25: 51

[19]

NistoraR, AndreiciL, AvramN. Acta Phys. Pol. A, 2009, 19: 538

[20]

GehlhoffW, UlriciW. Phys. Status Solidi B, 1980, 102: 11

[21]

ZhangB, QiuY, ShenG, HeW, YangB, LiuJ. J. Phys. Soc. Japa., 1993, 9: 1954

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/