1 550 nm long-wavelength vertical-cavity surface emitting lasers

Li-Jie Liu , Yuan-Da Wu , Yue Wang , Jun-Ming An , Xiong-Wei Hu

Optoelectronics Letters ›› : 342 -345.

PDF
Optoelectronics Letters ›› : 342 -345. DOI: 10.1007/s11801-018-8037-6
Article

1 550 nm long-wavelength vertical-cavity surface emitting lasers

Author information +
History +
PDF

Abstract

A 1 550 nm long-wavelength vertical cavity surface emitting laser (VCSEL) on InP substrate is designed and fabricated. The transfer matrix is used to compute reflectivity spectrum of the designed epitaxial layers. The epitaxial layers mainly consist of 40 pairs of n-AlxGayIn(1−xy)As/InP, and 6 strain compensated AlxGayIn(1−xy)As/InP quantum wells on n-InP substrate, respectively. The top distributed Bragg reflection (DBR) mirror system has been formed by fabricating 4.5 pairs of SiO2/Si. The designed cavity mode is around 1 536 nm. The dip of the fabricated cavity mode is around 1 530 nm. The threshold current is 30 mA and the maximum output power is around 270 μW under CW operation at room temperature.

Cite this article

Download citation ▾
Li-Jie Liu, Yuan-Da Wu, Yue Wang, Jun-Ming An, Xiong-Wei Hu. 1 550 nm long-wavelength vertical-cavity surface emitting lasers. Optoelectronics Letters 342-345 DOI:10.1007/s11801-018-8037-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XunM, XuCh, XieY Y, JiangG Q, WangJ, XuK, ChenH D. Optics Letters, 2015, 40: 12349

[2]

QiuH Y, WuZ M, DengT, HeY, XG Q. Chinese Optics Letters, 2016, 14: 021401

[3]

Y MS, L JY, XG, XZ, J GL, N HZ. Journal of Semiconductors, 2017, 38: 9

[4]

LiM K, YuanL J, YuH Y, KanQ, LiS Y, MiJ P, PanJ Q. Journal of Semiconductors, 2016, 37: 034007

[5]

HuangM C Y, ZhouY, Chang-HasnainC. Nature Photonics, 2007, 1: 119

[6]

KaoH Y, TsaiC T, PongC Y, LiangS F, WengZ K, ChiY Ch, KuoH Ch, HuangJ J, LeeT Ch, ShihT T, JouJ J, ChengW H, WuC-H, LinG RFew-Mode 850nm VCSEL Chip with Direct 16-QAM OFDM Encoding at 80-Gbit/s for 100-m OM4 MMF LinkOptical Fiber Communications Conference, 2017,

[7]

SodaH, IgaK, KitaharaC, SuematsuY. Japanese Journal of Applied Physics, 1979, 18: 2329

[8]

HofmannW, MüllerM, NadtochiyA, MeltzerCh, MutigA, BohmG, RosskofkJ, BimbergD, AmannM Ch, Chang-HasnainC. Optics Express, 2009, 17: 17547

[9]

ChaseC, RaoY, HofmannW, Chang-HasnainC J. Optics Express, 2010, 18: 15461

[10]

AmannM C, HofmannW. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15: 861

[11]

OrtsieferM, ShauR, MedererF, MichalzikR, RosskopfJ, BohmG, KohlerF, LauerC, MauteM, AmannM-C. Electronics Letters, 2002, 38: 1180

[12]

ChrostowskiL, FarajiB, HofmannW, AmannM Ch, WieczorekS, ChowW W. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13: 1200

[13]

HuangY, ZhangX, ZhangJ. IEEE Photonics Journal, 2017, 9: 4

[14]

YuH, YaoS, ZhouG. Optical & Quantum Electronics, 2018, 50: 4

[15]

FengY, LiuP, FengDHigh-speed Oxidation-confined 850nm VCSELsIEEE International Conference on Optoelectronics and Microelectronics, 2016, 389

[16]

FangT, CuiB, HaoS. Journal of Semiconductors, 2018, 39: 2

[17]

WenJ, WenY M, LiP, WS Sh. Journal of Semiconductors, 2016, 37: 064010

[18]

BornM, WolfE. Principles of Optics, 1989, 6th ednOxford, Pergamon Press

[19]

DanY, LeviM, KarniYFacet Engineering of High Power Single EmittersProceedings of SPIE - The International Society for Optical Engineering, 2011, 7918

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/