1 550 nm long-wavelength vertical-cavity surface emitting lasers

Li-Jie Liu, Yuan-Da Wu, Yue Wang, Jun-Ming An, Xiong-Wei Hu

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 342-345.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 342-345. DOI: 10.1007/s11801-018-8037-6
Article

1 550 nm long-wavelength vertical-cavity surface emitting lasers

Author information +
History +

Abstract

A 1 550 nm long-wavelength vertical cavity surface emitting laser (VCSEL) on InP substrate is designed and fabricated. The transfer matrix is used to compute reflectivity spectrum of the designed epitaxial layers. The epitaxial layers mainly consist of 40 pairs of n-AlxGayIn(1−xy)As/InP, and 6 strain compensated AlxGayIn(1−xy)As/InP quantum wells on n-InP substrate, respectively. The top distributed Bragg reflection (DBR) mirror system has been formed by fabricating 4.5 pairs of SiO2/Si. The designed cavity mode is around 1 536 nm. The dip of the fabricated cavity mode is around 1 530 nm. The threshold current is 30 mA and the maximum output power is around 270 μW under CW operation at room temperature.

Cite this article

Download citation ▾
Li-Jie Liu, Yuan-Da Wu, Yue Wang, Jun-Ming An, Xiong-Wei Hu. 1 550 nm long-wavelength vertical-cavity surface emitting lasers. Optoelectronics Letters, , 14(5): 342‒345 https://doi.org/10.1007/s11801-018-8037-6

References

[1]
XunM, XuCh, XieY Y, JiangG Q, WangJ, XuK, ChenH D. Optics Letters, 2015, 40: 12349
CrossRef Google scholar
[2]
QiuH Y, WuZ M, DengT, HeY, XG Q. Chinese Optics Letters, 2016, 14: 021401
CrossRef Google scholar
[3]
Y MS, L JY, XG, XZ, J GL, N HZ. Journal of Semiconductors, 2017, 38: 9
[4]
LiM K, YuanL J, YuH Y, KanQ, LiS Y, MiJ P, PanJ Q. Journal of Semiconductors, 2016, 37: 034007
CrossRef Google scholar
[5]
HuangM C Y, ZhouY, Chang-HasnainC. Nature Photonics, 2007, 1: 119
CrossRef Google scholar
[6]
KaoH Y, TsaiC T, PongC Y, LiangS F, WengZ K, ChiY Ch, KuoH Ch, HuangJ J, LeeT Ch, ShihT T, JouJ J, ChengW H, WuC-H, LinG RFew-Mode 850nm VCSEL Chip with Direct 16-QAM OFDM Encoding at 80-Gbit/s for 100-m OM4 MMF LinkOptical Fiber Communications Conference, 2017,
[7]
SodaH, IgaK, KitaharaC, SuematsuY. Japanese Journal of Applied Physics, 1979, 18: 2329
CrossRef Google scholar
[8]
HofmannW, MüllerM, NadtochiyA, MeltzerCh, MutigA, BohmG, RosskofkJ, BimbergD, AmannM Ch, Chang-HasnainC. Optics Express, 2009, 17: 17547
CrossRef Google scholar
[9]
ChaseC, RaoY, HofmannW, Chang-HasnainC J. Optics Express, 2010, 18: 15461
CrossRef Google scholar
[10]
AmannM C, HofmannW. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15: 861
CrossRef Google scholar
[11]
OrtsieferM, ShauR, MedererF, MichalzikR, RosskopfJ, BohmG, KohlerF, LauerC, MauteM, AmannM-C. Electronics Letters, 2002, 38: 1180
CrossRef Google scholar
[12]
ChrostowskiL, FarajiB, HofmannW, AmannM Ch, WieczorekS, ChowW W. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13: 1200
CrossRef Google scholar
[13]
HuangY, ZhangX, ZhangJ. IEEE Photonics Journal, 2017, 9: 4
[14]
YuH, YaoS, ZhouG. Optical & Quantum Electronics, 2018, 50: 4
CrossRef Google scholar
[15]
FengY, LiuP, FengDHigh-speed Oxidation-confined 850nm VCSELsIEEE International Conference on Optoelectronics and Microelectronics, 2016, 389
[16]
FangT, CuiB, HaoS. Journal of Semiconductors, 2018, 39: 2
[17]
WenJ, WenY M, LiP, WS Sh. Journal of Semiconductors, 2016, 37: 064010
CrossRef Google scholar
[18]
BornM, WolfE. Principles of Optics, 1989, 6th ednOxford, Pergamon Press
[19]
DanY, LeviM, KarniYFacet Engineering of High Power Single EmittersProceedings of SPIE - The International Society for Optical Engineering, 2011, 7918

This work has been supported by the National High Technology and Development Program of China (No.2015AA016902).

Accesses

Citations

Detail

Sections
Recommended

/