The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells

Yang Liu , Wei Liu , Meng-Xin Chen , Si-Han Shi , Zhi-Chao He , Jin-Long Gong , Tuo Wang , Zhi-Qiang Zhou , Fang-Fang Liu , Yun Sun , Shu Xu

Optoelectronics Letters ›› : 363 -366.

PDF
Optoelectronics Letters ›› : 363 -366. DOI: 10.1007/s11801-018-8036-7
Article

The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells

Author information +
History +
PDF

Abstract

With reducing the absorber layer thickness and processing temperature, the recombination at the back interface is severe, which both can result in the decrease of open-circuit voltage and fill factor. In this paper, we prepare Al2O3 by atomic layer deposition (ALD), and investigate the effect of its thickness on the performance of Cu(In,Ga)Se2 (CIGS) solar cell. The device recombination activation energy (EA) is increased from 1.04 eV to 1.11 eV when the thickness of Al2O3 is varied from 0 nm to 1 nm, and the height of back barrier is decreased from 48.54 meV to 38.05 meV. An efficiency of 11.57 % is achieved with 0.88-μm-thick CIGS absorber layer.

Cite this article

Download citation ▾
Yang Liu, Wei Liu, Meng-Xin Chen, Si-Han Shi, Zhi-Chao He, Jin-Long Gong, Tuo Wang, Zhi-Qiang Zhou, Fang-Fang Liu, Yun Sun, Shu Xu. The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells. Optoelectronics Letters 363-366 DOI:10.1007/s11801-018-8036-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%, https://doi.org/www.solar-frontier.com/eng/news/2017/1220_press.html.

[2]

GloecklerM, SitesJR. J. Appl. Phys., 2005, 98: 103703

[3]

AminN, ChelvanathanP, HossainMI, SopianK. Energy Procedia., 2012, 15: 291

[4]

ReinhardP, PianezziF, KranzL, NishiwakiS, ChirilaA, BuechelerS, TiwatiAN. Prog. Photovolt: Res. Appl., 2015, 23: 281

[5]

JarzembowskiE, FuhrmannB, LeipnerH, FranzelW, ScheerR. Thin Solid Films, 2017, 633: 61

[6]

JarzembowskiE, SyrowatkaF, KaufmannK, FranzelW, HolscherT, ScheerR. Appl. Phys. Lett., 2015, 107: 051601

[7]

YoonJH, KimJH, KimWM, ParkJK, BaikYJ, SeongTY, JeongJH. Prog. Photovolt: Res. Appl., 2014, 22: 90

[8]

CaballeroR, NichterwitzM, SteigertA, EickeA, LauermannI, SchockHW, KaufmannCA. Acta Mater., 2014, 63: 54

[9]

ZhuXL, ZhouZ, WangYM, ZhangL, LiAM, HuangFQ. Sol. Energy Mater. Sol. Cells, 2012, 101: 57

[10]

YoonJH, KimWM, ParkJK, BaikYJ, SeongTY, JeongJH. Prog. Photovolt: Res. Appl., 2014, 22: 69

[11]

JacksonP, WuerzR, HariskosD, LotterE, WitteW, PowallaM. Phys. Status Solidi (RRL)-Rapid Res. Lett., 2016, 10: 583

[12]

YoonJH, SeongTY, JeongJH. Prog. Photovolt: Res. Appl., 2013, 21: 58

[13]

GranathK, BodegardM, Stolt. HuangL. Sol. Energy Mater. Sol. Cells, 2000, 60: 279

[14]

JoelJ, VermangB, LarsenJ, GargandOD, EdoffM. Phys. Status Solidi RRL, 2015, 9: 288

[15]

VermangB, WatigenJT, FjallstromV, RostvallF, EdoffM, KotipalliR, HenryF, FlandreD. Prog. Photovolt: Res. Appl., 2014, 22: 1023

[16]

NadenauV, RauU, JasenekA, SchockHW. J. Appl. Phys., 2000, 87: 584

[17]

MiseT, TajimaS, FukanoT, HiguchiK, WasgioT, JimboK, KatagiriH. Prog. Photovolt: Res. Appl., 2016, 24: 1009

[18]

HegedusSS, ShafarmanWN. Prog. Photovolt: Res. Appl., 2004, 12: 155

AI Summary AI Mindmap
PDF

64

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/