The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells

Yang Liu, Wei Liu, Meng-Xin Chen, Si-Han Shi, Zhi-Chao He, Jin-Long Gong, Tuo Wang, Zhi-Qiang Zhou, Fang-Fang Liu, Yun Sun, Shu Xu

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 363-366.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 363-366. DOI: 10.1007/s11801-018-8036-7
Article

The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells

Author information +
History +

Abstract

With reducing the absorber layer thickness and processing temperature, the recombination at the back interface is severe, which both can result in the decrease of open-circuit voltage and fill factor. In this paper, we prepare Al2O3 by atomic layer deposition (ALD), and investigate the effect of its thickness on the performance of Cu(In,Ga)Se2 (CIGS) solar cell. The device recombination activation energy (EA) is increased from 1.04 eV to 1.11 eV when the thickness of Al2O3 is varied from 0 nm to 1 nm, and the height of back barrier is decreased from 48.54 meV to 38.05 meV. An efficiency of 11.57 % is achieved with 0.88-μm-thick CIGS absorber layer.

Cite this article

Download citation ▾
Yang Liu, Wei Liu, Meng-Xin Chen, Si-Han Shi, Zhi-Chao He, Jin-Long Gong, Tuo Wang, Zhi-Qiang Zhou, Fang-Fang Liu, Yun Sun, Shu Xu. The impact of Al2O3 back interface layer on low-temperature growth of ultrathin Cu(In,Ga)Se2 solar cells. Optoelectronics Letters, , 14(5): 363‒366 https://doi.org/10.1007/s11801-018-8036-7

References

[1]
Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency of 22.9%, https://doi.org/www.solar-frontier.com/eng/news/2017/1220_press.html.
[2]
GloecklerM, SitesJR. J. Appl. Phys., 2005, 98: 103703
CrossRef Google scholar
[3]
AminN, ChelvanathanP, HossainMI, SopianK. Energy Procedia., 2012, 15: 291
CrossRef Google scholar
[4]
ReinhardP, PianezziF, KranzL, NishiwakiS, ChirilaA, BuechelerS, TiwatiAN. Prog. Photovolt: Res. Appl., 2015, 23: 281
CrossRef Google scholar
[5]
JarzembowskiE, FuhrmannB, LeipnerH, FranzelW, ScheerR. Thin Solid Films, 2017, 633: 61
CrossRef Google scholar
[6]
JarzembowskiE, SyrowatkaF, KaufmannK, FranzelW, HolscherT, ScheerR. Appl. Phys. Lett., 2015, 107: 051601
CrossRef Google scholar
[7]
YoonJH, KimJH, KimWM, ParkJK, BaikYJ, SeongTY, JeongJH. Prog. Photovolt: Res. Appl., 2014, 22: 90
CrossRef Google scholar
[8]
CaballeroR, NichterwitzM, SteigertA, EickeA, LauermannI, SchockHW, KaufmannCA. Acta Mater., 2014, 63: 54
CrossRef Google scholar
[9]
ZhuXL, ZhouZ, WangYM, ZhangL, LiAM, HuangFQ. Sol. Energy Mater. Sol. Cells, 2012, 101: 57
CrossRef Google scholar
[10]
YoonJH, KimWM, ParkJK, BaikYJ, SeongTY, JeongJH. Prog. Photovolt: Res. Appl., 2014, 22: 69
CrossRef Google scholar
[11]
JacksonP, WuerzR, HariskosD, LotterE, WitteW, PowallaM. Phys. Status Solidi (RRL)-Rapid Res. Lett., 2016, 10: 583
CrossRef Google scholar
[12]
YoonJH, SeongTY, JeongJH. Prog. Photovolt: Res. Appl., 2013, 21: 58
CrossRef Google scholar
[13]
GranathK, BodegardM, Stolt. HuangL. Sol. Energy Mater. Sol. Cells, 2000, 60: 279
CrossRef Google scholar
[14]
JoelJ, VermangB, LarsenJ, GargandOD, EdoffM. Phys. Status Solidi RRL, 2015, 9: 288
CrossRef Google scholar
[15]
VermangB, WatigenJT, FjallstromV, RostvallF, EdoffM, KotipalliR, HenryF, FlandreD. Prog. Photovolt: Res. Appl., 2014, 22: 1023
CrossRef Google scholar
[16]
NadenauV, RauU, JasenekA, SchockHW. J. Appl. Phys., 2000, 87: 584
CrossRef Google scholar
[17]
MiseT, TajimaS, FukanoT, HiguchiK, WasgioT, JimboK, KatagiriH. Prog. Photovolt: Res. Appl., 2016, 24: 1009
CrossRef Google scholar
[18]
HegedusSS, ShafarmanWN. Prog. Photovolt: Res. Appl., 2004, 12: 155
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61774089 and 61504067), and the Yang Fan Innovative & Entrepreneurial Research Team Project (No.2014YT02N037).

Accesses

Citations

Detail

Sections
Recommended

/