Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3

Fei-fei Xin

Optoelectronics Letters ›› : 359 -362.

PDF
Optoelectronics Letters ›› : 359 -362. DOI: 10.1007/s11801-018-8034-9
Article

Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3

Author information +
History +
PDF

Abstract

The UV photorefractive properties of near-stoichiometric LiNbO3 single crystal are found to be significantly enhanced compared with the congruent one at 325 nm. The temperature dependence of the band edge of near-stoichiometric LiNbO3 crystal is investigated. Significant thermal-induced spectral shift in band gap which obeys the Bose-Einstein expression is observed, and the fundamental band gap at zero absolute temperature is found to be much larger than the congruent one. New absorption bands near the UV band edge which are much stronger in the near-stoichiometric LiNbO3 than those in the congruent LiNbO3 crystal show up at temperatures lower than ∼400 K. Note that the UV photorefractivity is enhanced in SLN, which has exactly the same tendency as the absorption strength.

Cite this article

Download citation ▾
Fei-fei Xin. Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3. Optoelectronics Letters 359-362 DOI:10.1007/s11801-018-8034-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

VolkT, WöhleckeM. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, 2008, Berlin, Springer-Verlag

[2]

TianB, ChenH, ChogeD, XuY, LiG, LiangW. Optoelectron. Lett., 2017, 13: 206

[3]

WuW, MaJ, PanH, WuE, ChenH, DismasK, LiangW. Optoelectron. Lett., 2017, 13: 156

[4]

PalS, DasB, WolfgangS. Appl. Phys. B, 2015, 120: 737

[5]

ZhengD, KongY, LiuS, ChenM, ChenS, ZhangL, RuppR, XuJ. Sci. Rep., 2016, 6: 20308

[6]

ZhengD, KongY, LiuS, YaoJ, ZhangL, ChenS, XuJ. AIP Adv., 2015, 1: 031501

[7]

WangJ, ZhuB, HaoZ, BoF, WangX, GaoF, LiY, ZhangG, XuJ. Opt. Express, 2016, 24: 21869

[8]

ChenX, LiB, XuJ, ZhuD, PanS, WuZh. J. Appl. Phys., 2001, 90: 1516

[9]

XinF, ZhangG, BoF, SunH, KongY, XuJ, VolkT, RubininaN. J. Appl. Phys., 2010, 107: 033113

[10]

ViñaL, LogothetidisS, CardonaM. Phys. Rev. B, 1984, 30: 1979

[11]

Castillo-TorresJ. Opt. Commun., 2013, 290: 107

[12]

CodyG D, TiedjeT, AbelesB, BrooksB, GoldsteinY. Phys. Rev. Lett., 1981, 47: 1480

[13]

DowJ D, RedfieldD. Phys. Rev. B, 1972, 5: 594

[14]

XinF, ZhaiZ, WangX, KongY, XuJ, ZhangG. Phys. Rev. B, 2012, 86: 165132

[15]

HerthP, GranzowT, SchanielD, WoikeTh, ImlauM, KrätzigE. Phys. Rev. Lett., 2005, 95: 067404

[16]

MerschjannC, SchokeB, ImlauM. Phys. Rev. B, 2007, 76: 085114

[17]

BerbenD, BuseK, WeveringS, HerthP, ImlauM, WoikeTh. J. Appl. Phys., 2000, 87: 1034

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/