Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3

Fei-fei Xin

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 359-362.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 359-362. DOI: 10.1007/s11801-018-8034-9
Article

Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3

Author information +
History +

Abstract

The UV photorefractive properties of near-stoichiometric LiNbO3 single crystal are found to be significantly enhanced compared with the congruent one at 325 nm. The temperature dependence of the band edge of near-stoichiometric LiNbO3 crystal is investigated. Significant thermal-induced spectral shift in band gap which obeys the Bose-Einstein expression is observed, and the fundamental band gap at zero absolute temperature is found to be much larger than the congruent one. New absorption bands near the UV band edge which are much stronger in the near-stoichiometric LiNbO3 than those in the congruent LiNbO3 crystal show up at temperatures lower than ∼400 K. Note that the UV photorefractivity is enhanced in SLN, which has exactly the same tendency as the absorption strength.

Cite this article

Download citation ▾
Fei-fei Xin. Mechanism of the UV band-edge photorefractivity enhancement in near-stoichiometric LiNbO3. Optoelectronics Letters, , 14(5): 359‒362 https://doi.org/10.1007/s11801-018-8034-9

References

[1]
VolkT, WöhleckeM. Lithium Niobate: Defects, Photorefraction and Ferroelectric Switching, 2008, Berlin, Springer-Verlag
CrossRef Google scholar
[2]
TianB, ChenH, ChogeD, XuY, LiG, LiangW. Optoelectron. Lett., 2017, 13: 206
CrossRef Google scholar
[3]
WuW, MaJ, PanH, WuE, ChenH, DismasK, LiangW. Optoelectron. Lett., 2017, 13: 156
CrossRef Google scholar
[4]
PalS, DasB, WolfgangS. Appl. Phys. B, 2015, 120: 737
CrossRef Google scholar
[5]
ZhengD, KongY, LiuS, ChenM, ChenS, ZhangL, RuppR, XuJ. Sci. Rep., 2016, 6: 20308
CrossRef Google scholar
[6]
ZhengD, KongY, LiuS, YaoJ, ZhangL, ChenS, XuJ. AIP Adv., 2015, 1: 031501
[7]
WangJ, ZhuB, HaoZ, BoF, WangX, GaoF, LiY, ZhangG, XuJ. Opt. Express, 2016, 24: 21869
CrossRef Google scholar
[8]
ChenX, LiB, XuJ, ZhuD, PanS, WuZh. J. Appl. Phys., 2001, 90: 1516
CrossRef Google scholar
[9]
XinF, ZhangG, BoF, SunH, KongY, XuJ, VolkT, RubininaN. J. Appl. Phys., 2010, 107: 033113
CrossRef Google scholar
[10]
ViñaL, LogothetidisS, CardonaM. Phys. Rev. B, 1984, 30: 1979
CrossRef Google scholar
[11]
Castillo-TorresJ. Opt. Commun., 2013, 290: 107
CrossRef Google scholar
[12]
CodyG D, TiedjeT, AbelesB, BrooksB, GoldsteinY. Phys. Rev. Lett., 1981, 47: 1480
CrossRef Google scholar
[13]
DowJ D, RedfieldD. Phys. Rev. B, 1972, 5: 594
CrossRef Google scholar
[14]
XinF, ZhaiZ, WangX, KongY, XuJ, ZhangG. Phys. Rev. B, 2012, 86: 165132
CrossRef Google scholar
[15]
HerthP, GranzowT, SchanielD, WoikeTh, ImlauM, KrätzigE. Phys. Rev. Lett., 2005, 95: 067404
CrossRef Google scholar
[16]
MerschjannC, SchokeB, ImlauM. Phys. Rev. B, 2007, 76: 085114
CrossRef Google scholar
[17]
BerbenD, BuseK, WeveringS, HerthP, ImlauM, WoikeTh. J. Appl. Phys., 2000, 87: 1034
CrossRef Google scholar

This work has been supported by the Doctoral Foundation of Tianjin Normal University (No.135202XB1607).

Accesses

Citations

Detail

Sections
Recommended

/