Coherent quadrature phase shift keying optical communication systems

Fady I. El-Nahal

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 372-375.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (5) : 372-375. DOI: 10.1007/s11801-018-8032-y
Article

Coherent quadrature phase shift keying optical communication systems

Author information +
History +

Abstract

Coherent optical fiber communications for data rates of 100 Gbit/s and beyond have recently been studied extensively because high sensitivity of coherent receivers could extend the transmission distance. Spectrally efficient modulation techniques such as M-ary phase shift keying (PSK) can be employed for coherent optical links. The integration of multi-level modulation formats based on coherent technologies with wavelength-division multiplexed (WDM) systems is vital to meet the aggregate bandwidth demand. This paper reviews coherent quadrature PSK (QPSK) systems to scale the network capacity and maximum reach of coherent optical communication systems to accommodate traffic growth.

Cite this article

Download citation ▾
Fady I. El-Nahal. Coherent quadrature phase shift keying optical communication systems. Optoelectronics Letters, , 14(5): 372‒375 https://doi.org/10.1007/s11801-018-8032-y

References

[1]
KikuchiK. J. Lightwave Technol., 2016, 34: 157
CrossRef Google scholar
[2]
TsukamotoS, Ly-GagnonD-S, KatohK, KikuchiKCoherent Demodulation of 40-Gbit/s Polarization-multiplexed QPSK Signals with 16-GHz Spacing After 200-km TransmissionProc. OFC, Paper PDP29, 2005,
[3]
KikuchiKCoherent Optical Communication TechnologyProc. OFC, Paper Th4F.4, 2015,
[4]
KahnJ M, HoK-P. IEEE J. Sel. Topics Quantum Electron., 2004, 10: 259
CrossRef Google scholar
[5]
TsukamotoS, KatohK, KikuchiK. IEEE Photon. Technol. Lett., 2006, 18: 1131
CrossRef Google scholar
[6]
MoriY, ZhangC, IgarashiK, KatohK, KikuchiK. Opt. Exp., 2009, 17: 1435
CrossRef Google scholar
[7]
NakashimaH, OyamaT, OhshimaC, AkiyamaY, HoshidaT, TaoZDigital Nonlinear Compensation Technologies in Coherent Optical Communication SystemsProc. OFC, Paper W1G.5, 2017,
[8]
SavoryS J. Opt. Exp., 2008, 16: 804
CrossRef Google scholar
[9]
MillarD S, Koike-AkinoT, ArıkS Ö, KojimaK, ParsonsK, YoshidaT, SugiharaT. Opt. Express, 2014, 22: 8798
CrossRef Google scholar
[10]
GriffinR, CarterAOptical Differential Quadrature Phase-shift Key (ODQPSK) for High Capacity Optical TransmissionProc. OFC, Paper WX6, 2002,
[11]
KikuchiK. IEICE Electron. Exp., 2011, 8: 1642
CrossRef Google scholar
[12]
DerrF. Electron Lett., 1991, 27: 2177
CrossRef Google scholar
[13]
No’eRPhase Noise Tolerant Synchronous QPSK Receiver Concept with Digital I&Q Baseband ProcessingProc. Opto-Electronics and Communications Conf., Paper 16C2-5, 2004,
[14]
Ly-GagnonD-S, TsukamotoS, KatohK, KikuchiK. J. Lightwave Technol., 2006, 24: 12
CrossRef Google scholar
[15]
TaylorM. IEEE Photon. Technol. Lett., 2004, 16: 674
CrossRef Google scholar
[16]
TsukamotoS, KatohK, KikuchiK. IEEE Photon. Technol. Lett., 2006, 18: 1016
CrossRef Google scholar
[17]
TsukamotoS, IshikawaY, KikuchiKOptical Homodyne Receiver Comprising Phase and Polarization Diversities with Digital Signal ProcessingProc. ECOC, Paper Mo4.2.1, 2006,
[18]
KikuchiK, TsukamotoS. J. Lightwave Technol., 2008, 20: 1817
CrossRef Google scholar
[19]
IshimuraS, KikuchiKMulti-dimensional Permutation Modulation Aiming at Both High Spectral Efficiency and High Power EfficiencyProc. OFC/NFOEC, Paper M3A.2, 2014,
[20]
El-NahalF I, HuseinA H M. (Optik) Int. J. Light Electron Opt., 2012, 123: 1301
CrossRef Google scholar
[21]
Koike-AkinoT, MillarD S, KojimaK, ParsonsK. Eight-Dimensional Modulation for Coherent Optical Communications, Proc. ECOC, Paper Tu.3.C.3, 2013,
[22]
KazovskyL, BenedettoS, WillnerA. Optical Fiber Communication Systems, 1996, 267

Accesses

Citations

Detail

Sections
Recommended

/