Quantification of collagen fiber orientation based on center line of second harmonic generation image for naturally aging skins

Zhi-fang Li, Shao-ping Qiu, Shu-lian Wu, Hui Li

Optoelectronics Letters ›› , Vol. 14 ›› Issue (4) : 306-310.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (4) : 306-310. DOI: 10.1007/s11801-018-8023-z
Article

Quantification of collagen fiber orientation based on center line of second harmonic generation image for naturally aging skins

Author information +
History +

Abstract

Quantification of fiber orientation is the key to characterizing the tissue mechanical properties and diagnosing diseases. A center line-based algorithm is presented for estimating the orientation distribution that first skeletonizes a binary image of fibers, followed by orientation estimation using a weight vector summation algorithm along the center line of image. Then we use the orientation at the skeleton to approximate the orientation of each pixel between the boundary and skeleton. The algorithm is applied for characterizing collagen fibers of mouse skins in second harmonic generation (SHG) image, and the circle standard deviation of orientation could be a biomarker to differentiate the naturally aging skins.

Cite this article

Download citation ▾
Zhi-fang Li, Shao-ping Qiu, Shu-lian Wu, Hui Li. Quantification of collagen fiber orientation based on center line of second harmonic generation image for naturally aging skins. Optoelectronics Letters, , 14(4): 306‒310 https://doi.org/10.1007/s11801-018-8023-z

References

[1]
DiL.G., SweeneyS.M., KorkkoJ., Ala-KokkoL., San AntonioJ.D.. Journal of Biological Chemistry, 2002, 277: 4223
CrossRef Google scholar
[2]
WuS., LiH., YangH., ZhangX., LiZ., XuS.. Journal of Biomedical Optics, 2011, 16: 040502
CrossRef Google scholar
[3]
ChagnonG., RebouahM., FavierD.. Journal of Elasticity, 2015, 120: 129
CrossRef Google scholar
[4]
MajeedH., OkoroC., Kajdaccsy-BallaA., ToussaintK.C.Jr.. Journal of Biomedical Optics, 2017, 22: 46004
CrossRef Google scholar
[5]
GoergenC.J., ChenH.H., SakadZ:icS., SrinivasanV.J., SosnovikD.E.. Physiological Reports, 2016, 4: e12894
CrossRef Google scholar
[6]
RaoR.A., MehtaM.R., ToussaintK.C.Jr.. Optics Express, 2009, 17: 14534
CrossRef Google scholar
[7]
BayanC., LevittJ.M., MillerE., KaplanD., GeorgakoudiL.. Journal of Applied Physics, 2009, 105: 102042
CrossRef Google scholar
[8]
GoergenC.J., RadhakrishnanH., SakadzicS., MandevilleE.T., LoE.H., SosnovikD.E., SrinivasanV.J.. Optics Letters, 2012, 37: 3882
CrossRef Google scholar
[9]
FlemingC.P., RipplingerC.M., WebbB., EfimovL.R., RollinsA.M.. J. Biomed. Opt., 2008, 13: 030505
CrossRef Google scholar
[10]
GanY., FlemingC.P.. Biomedical Optics Express, 2013, 4: 2150
CrossRef Google scholar
[11]
WangY., ZhangK., WasalaN.B., YaoX., DuanD., YAOG.. Biomedical Optics Express, 2014, 5: 2843
CrossRef Google scholar
[12]
AmbrosiC.M., FedorovV.V., SchuesslerR.B., RollinsA.M., EfimovL.R.. Journal of Biomedical Optics, 2012, 17: 071309
CrossRef Google scholar
[13]
QuinnK.P., GeorgakoudiL.. Journal of Biomedical Optics, 2013, 18: 046003
CrossRef Google scholar
[14]
YaoW., GanY., MyersK.M., VinkJ.Y., WapnerR.J., HendonC.P.. Plos One, 2016, 11: e0166709
CrossRef Google scholar
[15]
LiuZ., QuinnK.P., SperoniL., ArendtL., KuperwasserC., SonnenscheinC., SotoA.M., GeorgakoudiL.. Biomedical Optics Express, 2015, 6: 2294
CrossRef Google scholar
[16]
LiuJ., LiW., TianY.. Automatic Thresholding of Gray-level Pictures Using Two-dimension Otsu Method, International Conference on Circuits and Systems, 1991, 325
[17]
LamL., LeeS.W., SuenC.Y.. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14: 869
CrossRef Google scholar
[18]
BerensP.. Journal of Statistical Software, 2009, 31: 1
CrossRef Google scholar
[19]
PannaraleL., BraidottiP., d’AlbaL., GaudioE.. Acta Anatomica, 1994, 151: 36
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.81571726 and 61675043).

Accesses

Citations

Detail

Sections
Recommended

/