Quantification of collagen fiber orientation based on center line of second harmonic generation image for naturally aging skins

Zhi-fang Li , Shao-ping Qiu , Shu-lian Wu , Hui Li

Optoelectronics Letters ›› : 306 -310.

PDF
Optoelectronics Letters ›› : 306 -310. DOI: 10.1007/s11801-018-8023-z
Article

Quantification of collagen fiber orientation based on center line of second harmonic generation image for naturally aging skins

Author information +
History +
PDF

Abstract

Quantification of fiber orientation is the key to characterizing the tissue mechanical properties and diagnosing diseases. A center line-based algorithm is presented for estimating the orientation distribution that first skeletonizes a binary image of fibers, followed by orientation estimation using a weight vector summation algorithm along the center line of image. Then we use the orientation at the skeleton to approximate the orientation of each pixel between the boundary and skeleton. The algorithm is applied for characterizing collagen fibers of mouse skins in second harmonic generation (SHG) image, and the circle standard deviation of orientation could be a biomarker to differentiate the naturally aging skins.

Cite this article

Download citation ▾
Zhi-fang Li, Shao-ping Qiu, Shu-lian Wu, Hui Li. Quantification of collagen fiber orientation based on center line of second harmonic generation image for naturally aging skins. Optoelectronics Letters 306-310 DOI:10.1007/s11801-018-8023-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

DiL.G., SweeneyS.M., KorkkoJ., Ala-KokkoL., San AntonioJ.D.. Journal of Biological Chemistry, 2002, 277: 4223

[2]

WuS., LiH., YangH., ZhangX., LiZ., XuS.. Journal of Biomedical Optics, 2011, 16: 040502

[3]

ChagnonG., RebouahM., FavierD.. Journal of Elasticity, 2015, 120: 129

[4]

MajeedH., OkoroC., Kajdaccsy-BallaA., ToussaintK.C.Jr.. Journal of Biomedical Optics, 2017, 22: 46004

[5]

GoergenC.J., ChenH.H., SakadZ:icS., SrinivasanV.J., SosnovikD.E.. Physiological Reports, 2016, 4: e12894

[6]

RaoR.A., MehtaM.R., ToussaintK.C.Jr.. Optics Express, 2009, 17: 14534

[7]

BayanC., LevittJ.M., MillerE., KaplanD., GeorgakoudiL.. Journal of Applied Physics, 2009, 105: 102042

[8]

GoergenC.J., RadhakrishnanH., SakadzicS., MandevilleE.T., LoE.H., SosnovikD.E., SrinivasanV.J.. Optics Letters, 2012, 37: 3882

[9]

FlemingC.P., RipplingerC.M., WebbB., EfimovL.R., RollinsA.M.. J. Biomed. Opt., 2008, 13: 030505

[10]

GanY., FlemingC.P.. Biomedical Optics Express, 2013, 4: 2150

[11]

WangY., ZhangK., WasalaN.B., YaoX., DuanD., YAOG.. Biomedical Optics Express, 2014, 5: 2843

[12]

AmbrosiC.M., FedorovV.V., SchuesslerR.B., RollinsA.M., EfimovL.R.. Journal of Biomedical Optics, 2012, 17: 071309

[13]

QuinnK.P., GeorgakoudiL.. Journal of Biomedical Optics, 2013, 18: 046003

[14]

YaoW., GanY., MyersK.M., VinkJ.Y., WapnerR.J., HendonC.P.. Plos One, 2016, 11: e0166709

[15]

LiuZ., QuinnK.P., SperoniL., ArendtL., KuperwasserC., SonnenscheinC., SotoA.M., GeorgakoudiL.. Biomedical Optics Express, 2015, 6: 2294

[16]

LiuJ., LiW., TianY.. Automatic Thresholding of Gray-level Pictures Using Two-dimension Otsu Method, International Conference on Circuits and Systems, 1991, 325

[17]

LamL., LeeS.W., SuenC.Y.. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1992, 14: 869

[18]

BerensP.. Journal of Statistical Software, 2009, 31: 1

[19]

PannaraleL., BraidottiP., d’AlbaL., GaudioE.. Acta Anatomica, 1994, 151: 36

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/