Effects of organic acids modified ITO anodes on luminescent properties and stability of OLED devices

Jun-tao Hu, Kang-li Ye, Yang Huang, Peng Wang, Kai Xu, Xiang-hua Wang

Optoelectronics Letters ›› , Vol. 14 ›› Issue (4) : 262-266.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (4) : 262-266. DOI: 10.1007/s11801-018-8018-9
Article

Effects of organic acids modified ITO anodes on luminescent properties and stability of OLED devices

Author information +
History +

Abstract

In this paper, p-chlorophenylacetic acid and p-fluorophenylacetic acid were applied to modify the indium tin oxide (ITO) electrodes. The surface work functions of unmodified ITO, p-chlorophenylacetic acid modified ITO (Cl-ITO) and p-fluorophenylacetic acid modified ITO (F-ITO) are 5.0 eV, 5.26 eV and 5.14 eV, respectively, and the water contact angles are 7.3°, 59.1° and 46.5°, respectively. The increase of the work function makes the hole injection ability of the devices improved, which is proved by the hole transport devices. The self-assembly (SAM) layers transfer hydrophilic ITO to hydrophobic ITO, which makes ITO more compatible with the hydrophobic organic layers, making the organic film more stable during the operation. After modification, the organic light emitting diodes (OLEDs), SAM-modified ITO/NPB/Alq3/LiF/Al, with better performance and stability were fabricated. Especially, the OLED with Cl-ITO (Cl-OLED) has a maximum luminance of 22 428 cd/m2 (improved by 32.9%) and a half-lifetime of 46 h. Our results suggest that employing organic acids to modify ITO surface can enhance the stability and the luminescent properties of OLED devices.

Cite this article

Download citation ▾
Jun-tao Hu, Kang-li Ye, Yang Huang, Peng Wang, Kai Xu, Xiang-hua Wang. Effects of organic acids modified ITO anodes on luminescent properties and stability of OLED devices. Optoelectronics Letters, , 14(4): 262‒266 https://doi.org/10.1007/s11801-018-8018-9

References

[1]
DongK.Y., MingZ., WangJ.J., Xiao-LinW.U., GaoC.Y.. Journal of Functional Materials, 2011, 42: 306
[2]
DavidC., TinkhamB.P., PruniciP., PanckowA.. Surface & Coatings Technology, 2017, 314: 113
CrossRef Google scholar
[3]
MermerO., AsciY.. Journal of Optoelectronics & Advanced Materials, 2015, 17: 1339
[4]
ZhengH., ZhangF., ZhouN., SunM., LiX., XiaoY., WangS.. Organic Electronics, 2018, 56: 89
CrossRef Google scholar
[5]
S.GP., MoriT.. ESC Journal of Solid State Science and Technology, 2017, 6: R53
CrossRef Google scholar
[6]
JuntaoH.U., YangJ., PengF., MeiW., NiuY.. Semiconductor Optoelectronics, 2017, 38: 16
[7]
BulusuA., PaniaguaS.A., MacleodB.A., SigdelA.K., BerryJ.J., OlsonD.C., MarderS.R., GrahamS.. Langmuir the Acs Journal of Surfaces & Colloids, 2013, 29: 3935
CrossRef Google scholar
[8]
BesbesS., LtaiefA., ReybierK., PonsonnetL., JaffrezicN., DavenasJ., OuadaH.B.. Synthetic Metals, 2003, 138: 197
CrossRef Google scholar
[9]
HattonR.A., DayS.R., ChestersM.A., WillisM.R.. Thin Solid Films, 2001, 394: 291
CrossRef Google scholar
[10]
LeihuaX., ZhidanZ., ShuhuaT., LiJ., JinlongL.. Journal of Dispersion Science and Technology, 2012, 33: 1093
CrossRef Google scholar
[11]
JeongD., LimC., KimM., JeongK., KimJ.-H., KimJ., ParkJ.-G., MinK.-S., LeeJ.. Electronic Materials Letters, 2017, 13: 16
CrossRef Google scholar
[12]
BardeckerJ.A., MaH., KimT., HuangF., LiuM.S., ChengY.J., TingG., JenK.Y.. Advanced Functional Materials, 2008, 18: 3964
CrossRef Google scholar
[13]
CanM., HavareA.K., AydinH., YagmurcukardesN., DemicS., IcliS., OkurS.. Applied Surface Science, 2014, 314: 1082
CrossRef Google scholar
[14]
MuS.G., SongJ.M., KimC., LeeJ., KimJ., MiJ.L.. Electronic Materials Letters, 2015, 11: 252
CrossRef Google scholar
[15]
ZhaoY., DuanL., ZhangD., DongG., QiaoJ., WangL., QiuY.. Acs Applied Materials & Interfaces, 2014, 6: 4570
CrossRef Google scholar
[16]
LeeJ., JungB.J., LeeJ.I., ChuH.Y., DoL.M., ShimH.K.. Journal of Materials Chemistry, 2002, 12: 3494
CrossRef Google scholar
[17]
ChongL.W., LeeY.L., WenT.C.. Thin Solid Films, 2007, 515: 2833
CrossRef Google scholar
[18]
D’AndradeB.W., EslerJ., BrownJ.J.. Synthetic Metals, 2006, 156: 405
CrossRef Google scholar
[19]
ZuppiroliL., Si-AhmedL., KamarasK., NüeschF., BussacM.N., AdesD., SioveA., MoonsE., GrätzelM.. The European Physical Journal B - Condensed Matter and Complex Systems, 1999, 11: 505
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.51573036), the Fundamental Research Funds for the Central Universities of China (No.JD2016JGPY0007), the National High Technology Research and Development Program of China (No.2012AA011901), the National Program on Key Basic Research Project of China (No.2012CB723406), and the Industry-University-Research Cooperation Project of Aviation Industry Corporation of China (No.CXY2013HFGD20).

Accesses

Citations

Detail

Sections
Recommended

/