TM-pass polarizer based on multilayer graphene polymer waveguide

Ke-su Cai , Yue-e Li , Wen-jing Wei , Xi-jiao Mu , A-ning Ma , Zhong Wang , Dan-ming Song

Optoelectronics Letters ›› : 180 -184.

PDF
Optoelectronics Letters ›› :180 -184. DOI: 10.1007/s11801-018-8001-5
Article

TM-pass polarizer based on multilayer graphene polymer waveguide

Author information +
History +
PDF

Abstract

A TM-pass polarizer based on multilayer graphene polymer waveguide is proposed and theoretically analyzed. The mode properties, the extinction ratio, the insertion loss and the bandwidth are also discussed. The results show that a TM-pass polarizer, which only guides the TM mode, can be achieved by multilayer graphene polymer waveguide. With length of 150 μm, the proposed polarizer can achieve extinction ratio of 33 dB and insertion loss of 0.5 dB at optical wavelength of 1.55 μm. This device has an excellent performance, including large extinction ratio and low insertion loss within the spectral range from 1.45 μm to 1.6 μm.

Cite this article

Download citation ▾
Ke-su Cai, Yue-e Li, Wen-jing Wei, Xi-jiao Mu, A-ning Ma, Zhong Wang, Dan-ming Song. TM-pass polarizer based on multilayer graphene polymer waveguide. Optoelectronics Letters 180-184 DOI:10.1007/s11801-018-8001-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KozlovV. V., NunoJ., Ania-CastanonJ. D., WabnitzS.. Journal of Lightwave Technology, 2012, 29: 341

[2]

BerghR. A., LefevreH. C., ShawH. J.. Optics Express, 1980, 5: 479

[3]

AznakayevaD. E., RodriguezF. J., MarshallO. P., GrigorenkoA. N.. Optics Express, 2017, 25: 10255

[4]

LiuM., YinX., ZhangX.. Nano Letters, 2012, 12: 1482

[5]

LiuM., YinX., Ulin-AvilaE., GengB., ZentgrafT., JuL., WangF., ZhangX.. Nature, 2011, 474: 64

[6]

HuangB.-H., LuW.-B., LiX.-B., WangJ., LiuZ.-g. Applied Optics, 2016, 55: 5598

[7]

FanM., YangH., ZhengP., HuG., YunB., CuiY.. Optics Express, 2017, 25: 21619

[8]

DingY., ZhuX., XiaoS., HuH., FrandsenL. H., Asger MortensenN., YvindK.. Nano Letters, 2015, 15: 4393

[9]

ChenW., YangL., WangP., ZhangY., ZhouL., YangT., WangY., YangJ.. Optics Communications, 2016, 372: 85

[10]

GuanC., LiS., ShenY., YuanT., YangJ., YuanL.. Journal of Lightwave Technology, 2015, 33: 349

[11]

KimJ. T., ChoiC. G.. Optics express, 2012, 20: 3556

[12]

YinX., ZhangT., ChenL., LiX.. Optics Letters, 2015, 40: 1733

[13]

ChuR., GuanC., YangJ., ZhuZ., LiP., ShiJ., TianP., YuanL., BrambillaG.. Optics Express, 2017, 25: 13278

[14]

HeX., LiuJ.. Optical Materials Express, 2017, 7: 1398

[15]

KravetsV. G., GrigorenkoA. N., NairR. R., BlakeP., AnissimovaS., NovoselovK. S., GeimA. K.. Physical Review B: Condensed Matter, 2010, 81: 155413

[16]

KwonM. S.. IEEE Photonics Journal, 2017, 6: 1

[17]

de OliveiraR. E., de MatosC. J.. Scientific Reports, 2015, 5: 16949

[18]

ZhangJ., YangJ., LiangL., WuW.. Optics Communications, 2018, 407: 46

[19]

BassM., StrylandE. W. V., WilliamsD. R., WolfeW. L.. Handbook of Optics, 2009, McGraw-Hill, New York, USA

[20]

HuX., WangJ.. IEEE Photonics Journal, 2017, 9: 1

[21]

LiY., MaA., YangL., ZhangX.. Plasmonics, 2014, 9: 71

[22]

ChenC.-H., PangL., TsaiC.-H., LevyU., FainmanY.. Optics Express, 2005, 13: 5347

PDF

126

Accesses

0

Citation

Detail

Sections
Recommended

/