Dynamic time-correlated single-photon counting laser ranging

Huan Peng, Yu-rong Wang, Wen-dong Meng, Pei-qin Yan, Zhao-hui Li, Chen Li, Hai-feng Pan, Guang Wu

Optoelectronics Letters ›› , Vol. 14 ›› Issue (2) : 129-132.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (2) : 129-132. DOI: 10.1007/s11801-018-7265-0
Article

Dynamic time-correlated single-photon counting laser ranging

Author information +
History +

Abstract

We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

Cite this article

Download citation ▾
Huan Peng, Yu-rong Wang, Wen-dong Meng, Pei-qin Yan, Zhao-hui Li, Chen Li, Hai-feng Pan, Guang Wu. Dynamic time-correlated single-photon counting laser ranging. Optoelectronics Letters, , 14(2): 129‒132 https://doi.org/10.1007/s11801-018-7265-0

References

[1]
BullerG. S., McCarthyA., RenX., MaccaroneA., MoffatJ., PetillotY., WallaceA. M.. Single-Photon Depth Imaging in Free-space and Underwater Environments Applications of Lasers for Sensing and Free Space Communications Optical Society of America, 2015,
[2]
HanS., ChenQ., HeW., ZhouP., GuG.. Proc. SPIE, 2015, 9677: 96770Z
CrossRef Google scholar
[3]
TobinR., HalimiA., McCarthyA., RenX., McEwanK. J., McLaughlinS., BullerG. S.. Optical Engineering, 2017, 57: 031303
[4]
ShcheslavskiyV., MorozovP., DivochiyA., VakhtominY., SmirnovK., BeckerW.. Review of Scientific Instruments, 2016, 87: 053117
CrossRef Google scholar
[5]
GariepyG., KrstajicN., HendersonR., LiC., ThomsonR. R., BullerG. S., HeshmatB., RaskarR., LeachJ., FaccioD.. Nature Communications, 2015, 6: 6021
CrossRef Google scholar
[6]
WarburtonR., AniculaeseiC., ClericiM., AltmannY., GariepyG., McCrackenR., ReidD., McLaughlinS., PetrovichM., HayesJ., HendersonR., FaccioD., LeachJ.. Scientific Reports, 2017, 7: 43302
CrossRef Google scholar
[7]
ChenY., YangY., HaoP.. Proc. SPIE, 2017, 10605: 106052K
[8]
JonssonP., HedborgJ., HenrikssonM., SjöqvistL.. Proc. SPIE, 2015, 9649: 964905
CrossRef Google scholar
[9]
HedborgJ., JonssonP., HenrikssonM., SjöqvistL.. EDP Sciences, 2016, 119: 06010
[10]
LiuD., LiL.. Complementary Normalized Compressive Ghost Imaging with Entangled Photons, 2017,
[11]
ZhangY., HeY., YangF., LuoY., ChenW.. Chinese Optics Letters, 2016, 14: 111101
CrossRef Google scholar
[12]
QuatrevaletM., AiX., Perez-SerranoA., AdamiecP., BarberoJ., FixA., TijeroJ. M. G., EsquiviasI., RarityJ. G., EhretG.. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23: 5300311
CrossRef Google scholar
[13]
AiX., Perez-SerranoA., QuatrevaletM., NockR. W., DahnounN., EhretG., EsquiviasI., RarityJ. G.. Optics Express, 2016, 24: 21119
CrossRef Google scholar
[14]
LiZ., BaoZ., ShiY., FengB., WuE., WuG., ZengH.. IEEE Photonics Technology Letters, 2015, 27: 616
CrossRef Google scholar
[15]
LiB., MiaoQ., WangS., HuiD., ZhaoT., LiangK., YangR., HanD.. Proc. SPIE, 2016, 9858: 98580L
CrossRef Google scholar
[16]
ChenX., DingC., PanH., HuangK., LauratJ., WuG., WuE.. Scientific Reports, 2017, 7: 44600
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.11374105).

Accesses

Citations

Detail

Sections
Recommended

/