Dynamic time-correlated single-photon counting laser ranging

Huan Peng , Yu-rong Wang , Wen-dong Meng , Pei-qin Yan , Zhao-hui Li , Chen Li , Hai-feng Pan , Guang Wu

Optoelectronics Letters ›› : 129 -132.

PDF
Optoelectronics Letters ›› :129 -132. DOI: 10.1007/s11801-018-7265-0
Article

Dynamic time-correlated single-photon counting laser ranging

Author information +
History +
PDF

Abstract

We demonstrate a photon counting laser ranging experiment with a four-channel single-photon detector (SPD). The multi-channel SPD improve the counting rate more than 4×107 cps, which makes possible for the distance measurement performed even in daylight. However, the time-correlated single-photon counting (TCSPC) technique cannot distill the signal easily while the fast moving targets are submersed in the strong background. We propose a dynamic TCSPC method for fast moving targets measurement by varying coincidence window in real time. In the experiment, we prove that targets with velocity of 5 km/s can be detected according to the method, while the echo rate is 20% with the background counts of more than 1.2×107 cps.

Cite this article

Download citation ▾
Huan Peng, Yu-rong Wang, Wen-dong Meng, Pei-qin Yan, Zhao-hui Li, Chen Li, Hai-feng Pan, Guang Wu. Dynamic time-correlated single-photon counting laser ranging. Optoelectronics Letters 129-132 DOI:10.1007/s11801-018-7265-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BullerG. S., McCarthyA., RenX., MaccaroneA., MoffatJ., PetillotY., WallaceA. M.. Single-Photon Depth Imaging in Free-space and Underwater Environments Applications of Lasers for Sensing and Free Space Communications Optical Society of America, 2015,

[2]

HanS., ChenQ., HeW., ZhouP., GuG.. Proc. SPIE, 2015, 9677: 96770Z

[3]

TobinR., HalimiA., McCarthyA., RenX., McEwanK. J., McLaughlinS., BullerG. S.. Optical Engineering, 2017, 57: 031303

[4]

ShcheslavskiyV., MorozovP., DivochiyA., VakhtominY., SmirnovK., BeckerW.. Review of Scientific Instruments, 2016, 87: 053117

[5]

GariepyG., KrstajicN., HendersonR., LiC., ThomsonR. R., BullerG. S., HeshmatB., RaskarR., LeachJ., FaccioD.. Nature Communications, 2015, 6: 6021

[6]

WarburtonR., AniculaeseiC., ClericiM., AltmannY., GariepyG., McCrackenR., ReidD., McLaughlinS., PetrovichM., HayesJ., HendersonR., FaccioD., LeachJ.. Scientific Reports, 2017, 7: 43302

[7]

ChenY., YangY., HaoP.. Proc. SPIE, 2017, 10605: 106052K

[8]

JonssonP., HedborgJ., HenrikssonM., SjöqvistL.. Proc. SPIE, 2015, 9649: 964905

[9]

HedborgJ., JonssonP., HenrikssonM., SjöqvistL.. EDP Sciences, 2016, 119: 06010

[10]

LiuD., LiL.. Complementary Normalized Compressive Ghost Imaging with Entangled Photons, 2017,

[11]

ZhangY., HeY., YangF., LuoY., ChenW.. Chinese Optics Letters, 2016, 14: 111101

[12]

QuatrevaletM., AiX., Perez-SerranoA., AdamiecP., BarberoJ., FixA., TijeroJ. M. G., EsquiviasI., RarityJ. G., EhretG.. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23: 5300311

[13]

AiX., Perez-SerranoA., QuatrevaletM., NockR. W., DahnounN., EhretG., EsquiviasI., RarityJ. G.. Optics Express, 2016, 24: 21119

[14]

LiZ., BaoZ., ShiY., FengB., WuE., WuG., ZengH.. IEEE Photonics Technology Letters, 2015, 27: 616

[15]

LiB., MiaoQ., WangS., HuiD., ZhaoT., LiangK., YangR., HanD.. Proc. SPIE, 2016, 9858: 98580L

[16]

ChenX., DingC., PanH., HuangK., LauratJ., WuG., WuE.. Scientific Reports, 2017, 7: 44600

PDF

116

Accesses

0

Citation

Detail

Sections
Recommended

/