CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

Ming Dong , Guo-qiang Zhong , Shu-zhuo Miao , Chuan-tao Zheng , Yi-ding Wang

Optoelectronics Letters ›› : 119 -123.

PDF
Optoelectronics Letters ›› :119 -123. DOI: 10.1007/s11801-018-7248-1
Article

CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy

Author information +
History +
PDF

Abstract

A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, pyroelectric detectors and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two detectors. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.

Cite this article

Download citation ▾
Ming Dong, Guo-qiang Zhong, Shu-zhuo Miao, Chuan-tao Zheng, Yi-ding Wang. CO and CO2 dual-gas detection based on mid-infrared wideband absorption spectroscopy. Optoelectronics Letters 119-123 DOI:10.1007/s11801-018-7248-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

EscobedoP., ErenasM. M., Lopez-RuizN., CarvajalM. A., Gonzalez-ChocanoS., de Orbe-PayaI., Capitan-ValleyL. F., PalmaA. J., Martinez-OlmosA.. Analytical Chemistry, 2017, 89: 1697

[2]

LinY., Tie-genL., KunL., Jun-fengJ., TaoW.. Sensors & Actuators B Chemical, 2016, 226: 170

[3]

MullerF., PoppA., SchillerS., KuhnemannF.. SPIE, 2004, 5: 138

[4]

WoehlckH., DunningM. B., NithipatikomK.. Journal of Clinical Monitoring & Computing, 2000, 16: 535

[5]

BanachU., TiebeC., HuebertT.. Food Control, 2012, 26: 23

[6]

JonesA. Y., LamP. K.. Science of the Total Environment, 2006, 354: 150

[7]

PanigrahiD. C., BhattacharjeeR. M.. Journal-South African Institute of Mining and Metallurgy, 2004, 104: 367

[8]

JiangY.-l, LiG., WangJ.-j. Fire Technology, 2016, 52: 1255

[9]

XieZ.-j, TanQ.-l. International Journal of Infrared & Millimeter Waves, 2006, 27: 1639

[10]

MouraM. C. P., BrancoD. A. C., PetersG. P., SzkloA. S., SchaefferR.. Energy Policy, 2013, 61: 1357

[11]

WuH. P., YinX. K., DongL., PeiK. L., SampaoloA., PatimiscoP., ZhengH. D., MaW. G., ZhangL., YinW. B.. Applied Physics Letters, 2017, 110: 121104

[12]

SampaoloA., PatimiscoP., DongL., GerasA., ScamarcioG., StareckiT., TittelF. K., SpagnoloV.. Applied Physics Letters, 2015, 107: 6165

[13]

TittelF. K., SampaoloA., PatimiscoP., DongL., GerasA., StareckiT., SpagnoloV.. Optics Express, 2016, 24: A682

[14]

HanC. H., HongD. W., HanS. D., GwakJ., SinghK. C.. Sensors & Actuators B Chemical, 2007, 125: 224

[15]

SchwarzH., DongY., HornR.. Chemical Engineering & Technology, 2016, 39: 2011

PDF

86

Accesses

0

Citation

Detail

Sections
Recommended

/