A performance enhanced Rayleigh Brillouin optical time domain analysis sensing system

Yong-qian Li , Li-xin Zhang , Han-bai Fan , Hong Li

Optoelectronics Letters ›› : 84 -87.

PDF
Optoelectronics Letters ›› :84 -87. DOI: 10.1007/s11801-018-7241-8
Article

A performance enhanced Rayleigh Brillouin optical time domain analysis sensing system

Author information +
History +
PDF

Abstract

Aiming at the problem of large fading noise in Rayleigh Brillouin optical time domain analysis system, a wavelength scanning technique is proposed to enhance the performance of the temperature sensing system. The principle of the proposed technique to reduce the fading noise is introduced based on the analysis of Rayleigh Brillouin optical time domain analysis system. The experimental results show that the signal-to-noise ratio (SNR) at the end of optical fiber with length of 50 m after 17 times wavelength scanning is 5.21 dB higher than that with single wavelength, the Brillouin frequency shift (BFS) on the heated fiber with length of 70 m inserted at the center of sensing fiber can be accurately measured as 0.19 MHz, which is equivalent to a measurement accuracy of 0.19 °C. It indicates that the proposed technique can realize high-accuracy temperature measurement and has huge potential in the field of long-distance and high-accuracy sensing.

Cite this article

Download citation ▾
Yong-qian Li, Li-xin Zhang, Han-bai Fan, Hong Li. A performance enhanced Rayleigh Brillouin optical time domain analysis sensing system. Optoelectronics Letters 84-87 DOI:10.1007/s11801-018-7241-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YiB., MatthewH. S., ChristopherS. M.. Bundy Matthew and Chen Genda, Smart Materials and Structures, 2017, 26: 29230083

[2]

NiklesM., ThevenazL., RobertP. A.. Optics Letters, 1996, 21: 758

[3]

MizunoY., HayashiN., NakamuraK.. Electronics Letters, 2014, 50: 1153

[4]

YangZ.-s, HongX.-b, WuJ., GuoH.-x, LinJ.-t. Applied Physics Express, 2013, 6: 2502

[5]

ZhangX.-p, HuJ.-h, ZhangY.-x. Journal of Lightwave Technology, 2013, 31: 1954

[6]

CuiQ., PamukcuS., PervizpourM.. Sensors, 2015, 15: 8163

[7]

CuiQ.-s, PamukcuS., LinA.-x, XiaoW., HerrD., ToulouseJ., PervizpourM.. IEEE Sensors Journal, 2011, 11: 399

[8]

LiuJ., SuY., LvL.-d, LiangY., ZhangZ.-j. Journal of Optoelectronics·Laser, 2016, 27: 498

[9]

HeZ.-y, KazamaT., KoshikiyaY., FanX.-y, ItoF., HotateK.. Optics Express, 2011, 19: 764

[10]

ShimizuK., HoriguchiT., KoyamadaY.. Journal of Lightwave Technology, 1992, 10: 982

[11]

WaitP. C., NewsonT. P.. Optics Communication, 1996, 131: 285

[12]

WaitP. C., HartogA. H.. Electronics Letters, 2001, 13: 508

[13]

LuL.-d, SongY.-j, ZhuF., ZhangX.-p. Optics and Lasers in Engineering, 2012, 50: 1735

[14]

IzumitaH., KoyamadaY., FurukawaS.-u, SankawaI.. Journal of Lightwave Technology, 1997, 15: 267

[15]

IidaH., KoshikiyaY., ItoF., TanakaK.. Journal of Lightwave Technology, 2012, 30: 1121

[16]

ZhangX.-p, QiaoW.-y, SunZ.-h, ShanY.-y, ZengJ., ZhangY.-x. Optoelectronics Letters, 2016, 12: 375

[17]

De SouzaK.. Measurement Science and Technology, 2006, 17: 1065

PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

/