Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

Lian Wang , Yuan-yuan Zhou , Xue-jun Zhou , Xiao Chen

Optoelectronics Letters ›› : 138 -142.

PDF
Optoelectronics Letters ›› : 138 -142. DOI: 10.1007/s11801-018-7232-9
Article

Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

Author information +
History +
PDF

Abstract

Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

Cite this article

Download citation ▾
Lian Wang, Yuan-yuan Zhou, Xue-jun Zhou, Xiao Chen. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation. Optoelectronics Letters 138-142 DOI:10.1007/s11801-018-7232-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BENNETTC. H., BRASSARDG.. Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, 560: 175

[2]

ZhouY. Y., ZhouX. J., SuB. B.. Optoelectron. Lett., 2016, 12: 0148

[3]

WangL., ZhaoS. M.. Quantum Inf. Process., 2017, 16: 100

[4]

LiL., GuoF. Z.. Sci. Rep., 2017, 7: 11370

[5]

MayersD.. Journal of the ACM, 2001, 48: 351

[6]

HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901

[7]

BrassardG., LtttkenhausN., MorT.. Phys. Rev. Lett., 2000, 85: 1330

[8]

LoH. K., CurtyM., QiB.. Phys. Rev. Lett., 2012, 108: 130503

[9]

SunQ. C., WangW. L., LiuY.. Laser Phys. Lett., 2014, 11: 085202

[10]

TamakiK., LoH. K., FungC. H. F.. Phys. Rev. A, 2012, 85: 042307

[11]

GibsonG., CourtialJ., PadgettM. J.. Opt. Express, 2004, 12: 5448

[12]

SuZ. K., WangF. Q., LuY. Q.. Acta Phys. Sin., 2008, 56: 3016

[13]

BoydR. W., JhaA., MalikM.. SPIE OPTO, 2011, 79480: 79480L

[14]

SchiavonM., ValloneG., TicozziF., VilloresiP.. Phys. Rev. A, 2016, 93: 012331

[15]

ZhangY. Q., IvanB. D.. ICTON, 2014, 1

[16]

ShanY. Z., SunS. H., MaX. C., JiangM. S.. Phys. Rev. A, 2014, 90: 042334

[17]

WangQ., WangX. B.. Sci. Rep., 2014, 4: 4612

AI Summary AI Mindmap
PDF

75

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/