Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

Lian Wang, Yuan-yuan Zhou, Xue-jun Zhou, Xiao Chen

Optoelectronics Letters ›› , Vol. 14 ›› Issue (2) : 138-142.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (2) : 138-142. DOI: 10.1007/s11801-018-7232-9
Article

Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

Author information +
History +

Abstract

Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

Cite this article

Download citation ▾
Lian Wang, Yuan-yuan Zhou, Xue-jun Zhou, Xiao Chen. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation. Optoelectronics Letters, , 14(2): 138‒142 https://doi.org/10.1007/s11801-018-7232-9

References

[1]
BENNETTC. H., BRASSARDG.. Quantum Cryptography: Public Key Distribution and Coin Tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 1984, 560: 175
[2]
ZhouY. Y., ZhouX. J., SuB. B.. Optoelectron. Lett., 2016, 12: 0148
CrossRef Google scholar
[3]
WangL., ZhaoS. M.. Quantum Inf. Process., 2017, 16: 100
CrossRef Google scholar
[4]
LiL., GuoF. Z.. Sci. Rep., 2017, 7: 11370
CrossRef Google scholar
[5]
MayersD.. Journal of the ACM, 2001, 48: 351
CrossRef Google scholar
[6]
HwangW. Y.. Phys. Rev. Lett., 2003, 91: 057901
CrossRef Google scholar
[7]
BrassardG., LtttkenhausN., MorT.. Phys. Rev. Lett., 2000, 85: 1330
CrossRef Google scholar
[8]
LoH. K., CurtyM., QiB.. Phys. Rev. Lett., 2012, 108: 130503
CrossRef Google scholar
[9]
SunQ. C., WangW. L., LiuY.. Laser Phys. Lett., 2014, 11: 085202
CrossRef Google scholar
[10]
TamakiK., LoH. K., FungC. H. F.. Phys. Rev. A, 2012, 85: 042307
CrossRef Google scholar
[11]
GibsonG., CourtialJ., PadgettM. J.. Opt. Express, 2004, 12: 5448
CrossRef Google scholar
[12]
SuZ. K., WangF. Q., LuY. Q.. Acta Phys. Sin., 2008, 56: 3016
[13]
BoydR. W., JhaA., MalikM.. SPIE OPTO, 2011, 79480: 79480L
[14]
SchiavonM., ValloneG., TicozziF., VilloresiP.. Phys. Rev. A, 2016, 93: 012331
CrossRef Google scholar
[15]
ZhangY. Q., IvanB. D.. ICTON, 2014, 1
[16]
ShanY. Z., SunS. H., MaX. C., JiangM. S.. Phys. Rev. A, 2014, 90: 042334
CrossRef Google scholar
[17]
WangQ., WangX. B.. Sci. Rep., 2014, 4: 4612
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.61302099).

Accesses

Citations

Detail

Sections
Recommended

/