Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer

Bo-chuan Cui , Jian-li Wang , Kai-nan Yao , Tao Chen

Optoelectronics Letters ›› : 124 -128.

PDF
Optoelectronics Letters ›› : 124 -128. DOI: 10.1007/s11801-018-7218-7
Article

Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer

Author information +
History +
PDF

Abstract

An approach to measure a high-dynamic two-dimensional (2D) temperature field using a high-speed quadriwave lateral shearing interferometer (QWLSI) is proposed. The detailed theoretical derivation to express the wavefront reconstruct principle of the proposed method is presented. The comparison experiment with thermocouples shows that the temperature field measurement using QWLSI has a precision of ±0.5 °C. An experiment for measuring the highdynamic temperature field generated by an electrical heater is carried out. A 200 frame rate temperature field video with 512 × 512 resolution is obtained finally. Experimental results show that the temperature field measurement system using a QWLSI has the advantage of high sensitivity and high resolution.

Cite this article

Download citation ▾
Bo-chuan Cui, Jian-li Wang, Kai-nan Yao, Tao Chen. Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer. Optoelectronics Letters 124-128 DOI:10.1007/s11801-018-7218-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

YuleA., ChigierN., RalphS., BoulderstoneR., VenturagJ.. AIAA Journal, 2015, 19: 752

[2]

RichardH., RaffelM.. Measurement Science and Technology, 2001, 12: 1576

[3]

MiaoY., ZhangH., linJ., SongB., ZhangK., LinW., LiuB., YaoJ.. Applied Physics Letters, 2015, 106: 132410

[4]

GuoH., LiP., LiH., GeN., BaoC.. Review of Scientific Instruments, 2016, 87: 033502

[5]

LangH., OberleithnerK., PaschereitC., SieberM.. Experiments in Fluids, 2017, 58: 88

[6]

SueishiT., IshiiM., IshikawaM.. Applied Optics, 2017, 56: 3789

[7]

NicolasF., TodoroffV., PlyerA., BesneraisG., DonjatD., MicheliF., ChampagnatF., CornicP., SantY. L.. Experiments in Fluids, 2016, 57: 13

[8]

RenJ., LuoX., XiaA., ZhangY.. Applied Mechanics & Materials, 2014, 568-570: 50

[9]

YueX., YangY., LingT., LiuD., LuoY., BaiJ., ShenY.. Chinese Journal of Lasers, 2015, 42: 1008006

[10]

AknounS., BonP., SavatierJ., WattellierB., MonneretS.. Optics Express, 2015, 23: 16383

[11]

AknounS., SavatierJ., BonP., GallandF., AbdeladimL., WattellierB., MonneretS.. Journal of Biomedical Optics, 2015, 20: 126009

[12]

ChenX., DongL., WangS., YangP., XuB.. Optics Communications, 2017, 402: 276

[13]

ZhuW., LiJ., ChenL., ZhengD., YangY., HanZ.. Optics Communications, 2016, 380: 214

[14]

MonneretS., BonP., BaffouG., BertoP., SavatierJ., AknounS., RigneaultH.. Proceedings of the SPIE, 2013, 8792: 879209

[15]

PrimotJ., GuerineauN.. Applied Optics, 2000, 39: 5715

[16]

DaiF., TangF., WangX., SasakiO., FengP.. Applied Optics, 2012, 51: 5028

[17]

LingT., LiuD., SunL., YangY., ChengZ.. Proceedings of the SPIE, 2013, 8838: 88380J

[18]

InaH., TakedaM., KobayashiS.. Journal of the Optical Society of America, 1982, 72: 156

AI Summary AI Mindmap
PDF

70

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/