Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer

Bo-chuan Cui, Jian-li Wang, Kai-nan Yao, Tao Chen

Optoelectronics Letters ›› , Vol. 14 ›› Issue (2) : 124-128.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (2) : 124-128. DOI: 10.1007/s11801-018-7218-7
Article

Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer

Author information +
History +

Abstract

An approach to measure a high-dynamic two-dimensional (2D) temperature field using a high-speed quadriwave lateral shearing interferometer (QWLSI) is proposed. The detailed theoretical derivation to express the wavefront reconstruct principle of the proposed method is presented. The comparison experiment with thermocouples shows that the temperature field measurement using QWLSI has a precision of ±0.5 °C. An experiment for measuring the highdynamic temperature field generated by an electrical heater is carried out. A 200 frame rate temperature field video with 512 × 512 resolution is obtained finally. Experimental results show that the temperature field measurement system using a QWLSI has the advantage of high sensitivity and high resolution.

Cite this article

Download citation ▾
Bo-chuan Cui, Jian-li Wang, Kai-nan Yao, Tao Chen. Measurement of high-dynamic temperature field using high-speed quadriwave lateral shearing interferometer. Optoelectronics Letters, , 14(2): 124‒128 https://doi.org/10.1007/s11801-018-7218-7

References

[1]
YuleA., ChigierN., RalphS., BoulderstoneR., VenturagJ.. AIAA Journal, 2015, 19: 752
CrossRef Google scholar
[2]
RichardH., RaffelM.. Measurement Science and Technology, 2001, 12: 1576
CrossRef Google scholar
[3]
MiaoY., ZhangH., linJ., SongB., ZhangK., LinW., LiuB., YaoJ.. Applied Physics Letters, 2015, 106: 132410
CrossRef Google scholar
[4]
GuoH., LiP., LiH., GeN., BaoC.. Review of Scientific Instruments, 2016, 87: 033502
CrossRef Google scholar
[5]
LangH., OberleithnerK., PaschereitC., SieberM.. Experiments in Fluids, 2017, 58: 88
CrossRef Google scholar
[6]
SueishiT., IshiiM., IshikawaM.. Applied Optics, 2017, 56: 3789
CrossRef Google scholar
[7]
NicolasF., TodoroffV., PlyerA., BesneraisG., DonjatD., MicheliF., ChampagnatF., CornicP., SantY. L.. Experiments in Fluids, 2016, 57: 13
CrossRef Google scholar
[8]
RenJ., LuoX., XiaA., ZhangY.. Applied Mechanics & Materials, 2014, 568-570: 50
CrossRef Google scholar
[9]
YueX., YangY., LingT., LiuD., LuoY., BaiJ., ShenY.. Chinese Journal of Lasers, 2015, 42: 1008006
CrossRef Google scholar
[10]
AknounS., BonP., SavatierJ., WattellierB., MonneretS.. Optics Express, 2015, 23: 16383
CrossRef Google scholar
[11]
AknounS., SavatierJ., BonP., GallandF., AbdeladimL., WattellierB., MonneretS.. Journal of Biomedical Optics, 2015, 20: 126009
CrossRef Google scholar
[12]
ChenX., DongL., WangS., YangP., XuB.. Optics Communications, 2017, 402: 276
CrossRef Google scholar
[13]
ZhuW., LiJ., ChenL., ZhengD., YangY., HanZ.. Optics Communications, 2016, 380: 214
CrossRef Google scholar
[14]
MonneretS., BonP., BaffouG., BertoP., SavatierJ., AknounS., RigneaultH.. Proceedings of the SPIE, 2013, 8792: 879209
CrossRef Google scholar
[15]
PrimotJ., GuerineauN.. Applied Optics, 2000, 39: 5715
CrossRef Google scholar
[16]
DaiF., TangF., WangX., SasakiO., FengP.. Applied Optics, 2012, 51: 5028
CrossRef Google scholar
[17]
LingT., LiuD., SunL., YangY., ChengZ.. Proceedings of the SPIE, 2013, 8838: 88380J
CrossRef Google scholar
[18]
InaH., TakedaM., KobayashiS.. Journal of the Optical Society of America, 1982, 72: 156
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.11603024).

Accesses

Citations

Detail

Sections
Recommended

/