Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

Xiao-liang Shen , Yue Wang , Qi-feng Zhu , Peng Lü , Wei-nan Li , Chun-xiao Liu

Optoelectronics Letters ›› : 104 -108.

PDF
Optoelectronics Letters ›› : 104 -108. DOI: 10.1007/s11801-018-7215-x
Article

Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation

Author information +
History +
PDF

Abstract

The carbon ion implantation with energy of 4.0 MeV and a dose of 4.0×1014 ions/cm2 is employed for fabricating the optical waveguide in fluoride lead silicate glasses. The optical modes as well as the effective refractive indices are measured by the prism coupling method. The refractive index distribution in the fluoride lead silicate glass waveguide is simulated by the reflectivity calculation method (RCM). The light intensity profile and the energy losses are calculated by the finite-difference beam propagation method (FD-BPM) and the program of stopping and range of ions in matter (SRIM), respectively. The propagation properties indicate that the C2+ ion-implanted fluoride lead silicate glass waveguide is a candidate for fabricating optical devices.

Cite this article

Download citation ▾
Xiao-liang Shen, Yue Wang, Qi-feng Zhu, Peng Lü, Wei-nan Li, Chun-xiao Liu. Optical waveguides in fluoride lead silicate glasses fabricated by carbon ion implantation. Optoelectronics Letters 104-108 DOI:10.1007/s11801-018-7215-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

RiosC, StegmaierM, HosseiniP, WangD, SchererT, David WrightC, BhaskaranH, PerniceW H P. Nature Photonics, 2015, 9: 725

[2]

BradleyJ D B, PollnauM. Laser & Photonics Reviews, 2011, 5: 368

[3]

HuH, RickenR, SohlerW. Applied Physics B: Lasers and Optics, 2010, 98: 677

[4]

RighiniG C, ChiappiniA. Optical Engineering, 2014, 53: 071819

[5]

ValentinaZ, ZarinaS, AndreyL. Optik, 2017, 137: 203

[6]

FuG, QinX-F, WangX-L. Optical waveguide formed in a LiTaO3 crystal by using MeV C3+ ion implantation, Korea-China Symposium on Advanced Functional Films for Information, 2009, 1364

[7]

TanY, Vazquez de Aldana JavierR, ChenF. Optical Engineering, 2014, 53: 107109

[8]

TanY, AkhmadalievS, ZhouS-Q, SunS-Q, ChenF. Optics Express, 2014, 22: 3573

[9]

ChenF, WangX-L, WangK-M. Optical Materials, 2007, 29: 1523

[10]

ChenF. Laser & Photonics Reviews, 2012, 6: 622

[11]

LiuC-X, ShenX-L, ZhengR-L, GuoH-T, LiW-N, WeiW. Applied Physics B: Laser and Optics, 2017, 123: 56

[12]

ChenF. Critical Reviews in Solid State & Materials Sciences, 2008, 33: 165

[13]

VázquezG V, ValienteR, Gomez-SalcesS, Flores-RomeroE, RickardsJ, Trejo-LunaR. Optics & Laser Technology, 2016, 79: 132

[14]

WangX-L, WangK-M, FuG, LiS-L, ShenD-Y, MaH-J, NieR. Optics Express, 2004, 12: 4675

[15]

AseevV A, KolobkovaE V, MoskalevaK S, NekrasovaY A, NikonorovN V, NuryevR K. Optics Spectroscopy, 2013, 114: 751

[16]

LiW-N, ZouK-S, LuM, PengB, ZhaoW. International Journal of Applied Ceramic Technology, 2010, 7: 369

[17]

ZieglerJ F, ZieglerM D, BiersackJ P. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2010, 268: 1818

[18]

BanyszI, ZolnaiZ, FriedM, BerneschiS, PelliS, Nunzi-ContiG. Nuclear Instruments Methods in Physics Research B, 2014, 326: 81

[19]

LiuC-X, FuL-L, ZhangL-L, GuoH-T, LiW-N, LinS-B, WeiW. Applied Physics A: Materials Science & Processing, 2016, 122: 94

[20]

WangL, Haunhorst ChristianE, Volk MartinF, ChenF, KipD. Optics Express, 2015, 23: 30188

[21]

TanY, ChenF, WangL, JiaoY. Nuclear Instruments and Methods in Physics Research B, 2007, 260: 567

[22]

ChandlerP J, LamaF L. Optica Acta: International Journal of Optics, 1986, 33: 127

[23]

Rsoft Design Group, Computer Software BeamPROP Version 8.0, http://www.rsoftdesign.com.

[24]

TanY, MaL-n, AkhmadalievS, ZhouS-Q, ChenF. Optical Materials Express, 2016, 6: 711

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/