Compressed sensing reconstruction of sparse spectrum based on digital micro-mirror device platform

Li-xing Liu , Chun-yong Yang , Run-yu Wang , Wen-jun Ni , Xian-zan Qin , Yang Deng , Kao-ming Chen , Jin Hou , Shao-ping Chen

Optoelectronics Letters ›› : 6 -11.

PDF
Optoelectronics Letters ›› : 6 -11. DOI: 10.1007/s11801-018-7179-x
Article

Compressed sensing reconstruction of sparse spectrum based on digital micro-mirror device platform

Author information +
History +
PDF

Abstract

A new method which employs compressive sensing (CS) to reconstruct the sparse spectrum is designed and experimentally demonstrated. On the basis of CS theory, the simulation results indicate that the probability of reconstruction is high when the step of the sparsity adaptive matching pursuit algorithm is confirmed as 1. Contrastive analysis for four kinds of commonly used measurement matrices: part Hadamard, Bernoulli, Toeplitz and Circular matrix, has been conducted. The results illustrate that the part Hadamard matrix has better performance of reconstruction than the other matrices. The experimental system of the spectral compression reconstruction is mainly based on the digital micro-mirror device (DMD). The experimental results prove that CS can reconstruct sparse spectrum well under the condition of 50% sampling rate. The system error 0.078 1 is obtained, which is defined by the average value of the 2-norm. Furthermore, the proposed method shows a dominant ability to discard redundancy.

Cite this article

Download citation ▾
Li-xing Liu, Chun-yong Yang, Run-yu Wang, Wen-jun Ni, Xian-zan Qin, Yang Deng, Kao-ming Chen, Jin Hou, Shao-ping Chen. Compressed sensing reconstruction of sparse spectrum based on digital micro-mirror device platform. Optoelectronics Letters 6-11 DOI:10.1007/s11801-018-7179-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

XuJ., LiuH., LinC., SunQ.. Opt. Commun., 2017, 383: 250

[2]

QuanX., LiuH., LuZ., ChenX., WangX., XuJ., GaoQ.. Opt. Commun., 2016, 359: 95

[3]

XiangD., ArnoldM. A.. Appl. Spectrosc., 2011, 65: 1170

[4]

DonohoD. L.. IEEE T. Inform. Theory, 2006, 52: 1289

[5]

Emmanuel JC., RombergJ. K., TaoT.. Commun. Pur. Appl. Math., 2005, 59: 1207

[6]

TakharD., LaskaJ. N., WakinM. B., DuarteM. F., KellyK. F., BaraniukR. G.. A New Compressive Imaging Camera Architecture Using Optical-domain Compression, Proceedings of SPIE-The International Society for Optical Engineering, 2006, 6065: 43

[7]

DongW., ShiG., LiX.. IEEE T. Image Process., 2013, 22: 700

[8]

WangP., AnW., DengX., YangJ.. J. of Appl. Remote Sens., 2015, 9: 095077

[9]

KüstnerT., WürslinC., GatidisS., MartirosianP., NikolaouK., SchwenzerN.F., SchickF., YangB., SchmidtH.. IEEE T. Med. Imaging, 2016, 35: 2447

[10]

ShiB., LianQ., ChenS.. Iet Image Process., 2016, 10: 68

[11]

XuJ., HuB., FengD.. Appl. Spectrosc., 2012, 66: 1044

[12]

XuJ., ZhuZ., LiuC., HuangZ.. Opt. Commun., 2014, 325: 122

[13]

DoT. T., GanL., NguyenN., TranT. D.. Sparsity Adaptive Matching Pursuit Algorithm for Practical Compressed Sensing, Asilomar Conference on Signals, Systems and Computers, 2008, 581

[14]

LiS., XuL., WangX.. IEEE T. Ind. Inform., 2013, 9: 2177

[15]

MaY., XuP., GaoY.. Optimization of the Measurement Matrix Used for CS-Based Non-Reconstruction Detection Method in Cognitive Radio, Fourth International Conference on Instrumentation and Measurement, Computer, Communication and Control, 2014, 484

[16]

WangK., ZhuY., ChenJ., NiuY.. Comparison and Analysis of the Performance on Measurement Matrix to Spectrum Estimation, 2012,

[17]

SloaneN., HarwitM.. Applied Optics, 1976, 15: 107

[18]

SaptariV.. Fourier-Transform Spectroscopy Instrumentation Engineering, 2004,

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/