Optimization design of the angle detecting system used in the fast steering mirror

Ying-xue Ni, Jia-bin Wu, Xiao-gang San, Shi-jie Gao, Shao-hang Ding, Jing Wang, Tao Wang, Hui-xian Wang

Optoelectronics Letters ›› , Vol. 14 ›› Issue (1) : 48-52.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (1) : 48-52. DOI: 10.1007/s11801-018-7172-4
Article

Optimization design of the angle detecting system used in the fast steering mirror

Author information +
History +

Abstract

In this paper, in order to design a fast steering mirror (FSM) with large deflection angle and high linearity, a deflection angle detecting system (DADS) using quadrant detector (QD) is developed. And the mathematical model describing DADS is established by analyzing the principle of position detecting and error characteristics of QD. Based on this mathematical model, the variation tendencies of deflection angle and linearity of FSM are simulated. Then, by changing the parameters of the DADS, the optimization of deflection angle and linearity of FSM is demonstrated. Finally, a QD-based FSM is designed based on this method, which achieves ±2° deflection angle and 0.72% and 0.68% linearity along x and y axis, respectively. Moreover, this method will be beneficial to the design of large deflection angle and high linearity FSM.

Cite this article

Download citation ▾
Ying-xue Ni, Jia-bin Wu, Xiao-gang San, Shi-jie Gao, Shao-hang Ding, Jing Wang, Tao Wang, Hui-xian Wang. Optimization design of the angle detecting system used in the fast steering mirror. Optoelectronics Letters, , 14(1): 48‒52 https://doi.org/10.1007/s11801-018-7172-4

References

[1]
CHENE.-g., HUANGJ.-m., GUOT.-l., WUR.-m.. Optoelectron. Lett., 2017, 13: 0253
[2]
SuiteM. R., BurrisH. R., MooreC. I., VilcheckM. J., MahonR., JacksonC., StellM. F., DavisM. A., RabinovichW. S., ScharpfW. J., ReedA. E., GilbreathG. C.. Proc. SPIE, 2004, 5160: 439
CrossRef Google scholar
[3]
XUET., ZHANGS.-j., WUB.. Optoelectron. Lett., 2017, 13: 0071
CrossRef Google scholar
[4]
GloessR., LulaB.. Proc. SPIE, 2010, 7739: 77391
CrossRef Google scholar
[5]
KlukD. J., BouletM. T., TrumperD. L.. Mechatronics, 2012, 22: 257
CrossRef Google scholar
[6]
BertaA., HeddingL., HoffmanC., MessarosM.. SPIE Design and Application, 1999, 3787: 181
[7]
HilkertJ. M., KangaG., KinnearK.. Proc. SPIE, 2012, 9076: 90760
[8]
MäkynenA. J., KostamovaaraJ. T., MyllyläR. A.. Proc. SPIE, 1989, 1194: 243
CrossRef Google scholar
[9]
ZhangJ., ItzlerM. A., ZbindenH., PanJ.-W.. Light: Sci. Appl., 2015, 4: e286
CrossRef Google scholar
[10]
Cui_S., SohY. C.. Appl. Phys. Lett., 2010, 96: 081102
CrossRef Google scholar
[11]
Chen_M. W., YangY. P., JiaX. T.. Optik, 2013, 124: 6806
CrossRef Google scholar
[12]
Optics In Motion (OIM), www.opticsinmotion.net.
[13]
ChuF.. Ph.D. thesis, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, 2017, 115

This work has been supported by the National Natural Science Foundation of China (No.51605465).

Accesses

Citations

Detail

Sections
Recommended

/