Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

Yong-chuang Zhao , Zhong-quan Nie , Ai-ping Zhai , Yan-ting Tian , Chao Liu , Chang-kun Shi , Bao-hua Jia

Optoelectronics Letters ›› : 21 -24.

PDF
Optoelectronics Letters ›› : 21 -24. DOI: 10.1007/s11801-018-7163-5
Article

Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films

Author information +
History +
PDF

Abstract

In this work, we focus on the optical super-resolution effect induced by strong nonlinear saturation absorption (NSA) of graphene oxide (GO) membranes. The third-order optical nonlinearities are characterized by the canonical Z-scan technique under femtosecond laser (wavelength: 800 nm, pulse width: 100 fs) excitation. Through controlling the applied femtosecond laser energy, NSA of the GO films can be tuned continuously. The GO film is placed at the focal plane as a unique amplitude filter to improve the resolution of the focused field. A multi-layer system model is proposed to present the generation of a deep sub-wavelength spot associated with the nonlinearity of GO films. Moreover, the parameter conditions to achieve the best resolution (∼λ/6) are determined entirely. The demonstrated results here are useful for high density optical recoding and storage, nanolithography, and super-resolution optical imaging.

Cite this article

Download citation ▾
Yong-chuang Zhao, Zhong-quan Nie, Ai-ping Zhai, Yan-ting Tian, Chao Liu, Chang-kun Shi, Bao-hua Jia. Optical super-resolution effect induced by nonlinear characteristics of graphene oxide films. Optoelectronics Letters 21-24 DOI:10.1007/s11801-018-7163-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Li[ Q, WeiJ, WeiT, LiangX, BaiZ, ZhangL. Applied Optics, 2017, 56: 93

[2]

Nie[ Z, LinH, LiuX, ZhaiA, TianY, WangW, LiD, DingW, ZhangX, SongY, JiaB. Light: Science & Applications, 2017, 6: e17032

[3]

Nie[ Z, ShiG, LiD, ZhangX, WangY, SongY. Journal of Optics, 2015, 17: 5

[4]

Ding[ C, WeiJ, LiQ, LiangX, WeiT. Optics Letters, 2016, 41: 1550

[5]

Li J, ChenF, ShenX, DaiS-x, XuT-f, NieQ-h. Optoelectronics Letters, 2015, 11: 203

[6]

Betzig[ E, TrautmanJ K, WolfeR, GyorgyE M, FinnP L, KryderM H, ChangC-H. Applied Physics Letters, 1992, 61: 142

[7]

Betzig[ E, TrautmanJ K, HarrisT D, WeinerJ S, KostelakR L. Science, 1991, 251: 1468

[8]

Tominaga[ J, NakanoT, AtodaN. Applied Physics Letters, 1998, 73: 2078

[9]

SomayehS, MohammadH M A. Optics & Laser Technology, 2016, 82: 34

[10]

Zhang[ X, WeiJ. Photonics Research, 2015, 3: 100

[11]

Ding[ C, WeiJ. Scientific Reports, 2016, 6: 18845

[12]

Wei[ J. Optics Communications, 2013, 291: 143

[13]

Ren[ J, ZhengX, TianZ, LiD, WangP, JiaB. Applied Physics Letters, 2016, 109: 221105

[14]

WenH, ZhangX-l, LiuZ-b, YanX-q, LiX-c, TianJ-g. Optoelectronics Letters, 2015, 11: 161

[15]

Zheng[ X, JiaB, ChenX, GuM. Advanced Materials, 2014, 26: 2699

[16]

Zheng[ X, LinH, YangT, JiaB. Journal of Physics D: Applied Physics, 2017, 50: 074003

[17]

Fraser[ S, ZhengX, QiuL, LiD, JiaB. Applied Physics Letters, 2015, 107: 031112

[18]

Zheng[ X, JiaB, LinH, QiuL, LiD, GuM. Nature Communications, 2015, 6: 8433

[19]

Sheik-Bahae[ M, SaidA A, WeiT-H, HaganD J, Van StrylandE W. IEEE Journal of Quantum Electronics, 1990, 26: 760

[20]

Nie[ Z, ShiG, ZhangX, WangY, SongY. Optics Communications, 2014, 331: 87

[21]

Wang[ R, WeiJ, XiaoM. Journal of Optics, 2013, 15: 025204

[22]

Wei[ J, YanH. Optics Letters, 2014, 39: 6387

[23]

Nie[ Z, ShiG, LiZ, WangY, ZhangX, ShuiM, AoG, YangJ, SongY. Optics & Laser Technology, 2014, 59: 36

AI Summary AI Mindmap
PDF

68

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/