High Q reflection filter using a gradient-index membrane with a grating surface

Jun-lang Li, Tian Sang, Jian-yu Zhou, Rui Wang, Hong-yan Shao, Yue-ke Wang

Optoelectronics Letters ›› , Vol. 14 ›› Issue (1) : 12-16.

Optoelectronics Letters ›› , Vol. 14 ›› Issue (1) : 12-16. DOI: 10.1007/s11801-018-7149-3
Article

High Q reflection filter using a gradient-index membrane with a grating surface

Author information +
History +

Abstract

High Q reflection filter using a gradient-index (GI) membrane with a grating surface is proposed. The thickness of GI membrane is very small comparing with the traditional multilayer reflection filter or the GI reflection filter, and the GI membrane can also break the restriction of the resonant excitation condition of the conventional guided-mode resonance (GMR) filter. High Q filtering features can be maintained even on the high-index substrate. The grating thickness of the GI membrane filter can be used to select the resonance wavelength with different quality factors (QFs), the reflection peak is blue-shifted, and the QF is decreased from 554.4 to 207.8 as the grating thickness is increased from 50 nm to 150 nm. The gradient coefficient of the GI membrane filter can be used to tailor the number of the reflection channels. The resonant excitations of high order waveguide modes confined in the GI membrane are responsible for the high Q filtering properties with multiple channels.

Cite this article

Download citation ▾
Jun-lang Li, Tian Sang, Jian-yu Zhou, Rui Wang, Hong-yan Shao, Yue-ke Wang. High Q reflection filter using a gradient-index membrane with a grating surface. Optoelectronics Letters, , 14(1): 12‒16 https://doi.org/10.1007/s11801-018-7149-3

References

[1]
MacleodH. A.. Thin-Film Optical Filters, 2010, New York, CRC Press
[2]
JiaoH. F., DingT., ChengX. B., MaB., HeP. F., WuY. G.. Chin. Opt. Lett., 2010, 8: 1102
CrossRef Google scholar
[3]
LiuC. C., ChangY. H., WuC. J.. J. Electromagn. Waves Appl., 2010, 24: 293
CrossRef Google scholar
[4]
ShankarA., KumarS.. J. Opt., 2014, 43: 257
CrossRef Google scholar
[5]
MaysmithT. C., SloyanK. A., GaziaR., EasonR. W.. Cryst. Growth Des., 2011, 11: 1098
CrossRef Google scholar
[6]
WangZ. S., BaoG. H., JiaoH. F., MaB., ZhangJ. L., DingT., ChengX. B.. Opt. Express, 2013, 21: 30623
CrossRef Google scholar
[7]
ChengX. B., FanB., DobrowolskiJ. A., WangL., WangZ. S.. Opt. Express, 2008, 16: 2315
CrossRef Google scholar
[8]
TangC. J., JaingC. C., LeeK. S., LeeC. C.. Appl. Opt., 2008, 47: C167
CrossRef Google scholar
[9]
RatsD., PoitrasD., SoroJ. M., MartinuL., StebutJ. V.. Surf. Coat. Technol., 1999, 111: 220
CrossRef Google scholar
[10]
LappschiesM., GörtzB., RistauD.. Appl. Opt., 2006, 45: 1502
CrossRef Google scholar
[11]
VerlyP. G.. Appl. Opt., 2008, 47: 172
CrossRef Google scholar
[12]
ZhangJ. C., FangM., JinY. X., HeH. B.. Thin Solid Films, 2012, 520: 5447
CrossRef Google scholar
[13]
SangT., CaiS. H., WangZ. S.. J. Mod. Opt., 2012, 58: 1260
CrossRef Google scholar
[14]
WangS. S., MagnussonR.. Appl. Opt., 1995, 34: 2414
CrossRef Google scholar
[15]
ZhongY., GoldenfeldZ., LiK., StreyerW., YuL., NordinL., MurphyN., WassermanD.. Opt. Lett., 2017, 42: 223
CrossRef Google scholar
[16]
IlyasS., BöckingT., KilianK., ReeceP. J., GoodingJ., GausK., GalM.. Opt. Mater., 2007, 29: 619
CrossRef Google scholar
[17]
OskooiA. F., RoundyD., IbanescuM., BermelP., JoannopoulosJ. D., JohnsonS. G.. Comput. Phys. Commum., 2010, 181: 687
CrossRef Google scholar
[18]
SangT., WangY. k., LiJ. L., ZhouJ. Y., JiangW. W., WangJ. C., ChenG. Q.. Opt. Commun., 2017, 382: 138
CrossRef Google scholar
[19]
WangQ., LiY., HuangT., WangJ. Y., ZhangD. W.. Microwave Opt. Technol. Lett., 2016, 58: 705
CrossRef Google scholar
[20]
DongY., SongY. F., MaL., GaoF. F.. Optoelectron. Lett., 2016, 12: 329
CrossRef Google scholar
[21]
RytovS. M.. Sov. Phys. JETP, 1956, 2: 2466
[22]
BykovD. A., DoskolovichL. L.. Opt. Express, 2015, 23: 19234
CrossRef Google scholar
[23]
SangT., WangZ. S., WangL., WuY. G., ChenL. Y.. J. Opt. A: Pure Appl. Opt., 2006, 8: 62
CrossRef Google scholar
[24]
WangZ. S., SangT., ZhuJ. T., WangL., WuY. G., ChenL. Y.. Appl. Phys. Lett., 2006, 89: 241119
CrossRef Google scholar
[25]
HendrixK. D., HulseC. A., OckenfussG. J., SargentR. B.. Proc. SPIE, 2008, 7607: 706702
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (No.11404143), the Fundamental Research Funds for the Central Universities (No.JUSRP115A15), and the Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and Technology (No.BM2014402).

Accesses

Citations

Detail

Sections
Recommended

/