High Q reflection filter using a gradient-index membrane with a grating surface

Jun-lang Li , Tian Sang , Jian-yu Zhou , Rui Wang , Hong-yan Shao , Yue-ke Wang

Optoelectronics Letters ›› : 12 -16.

PDF
Optoelectronics Letters ›› : 12 -16. DOI: 10.1007/s11801-018-7149-3
Article

High Q reflection filter using a gradient-index membrane with a grating surface

Author information +
History +
PDF

Abstract

High Q reflection filter using a gradient-index (GI) membrane with a grating surface is proposed. The thickness of GI membrane is very small comparing with the traditional multilayer reflection filter or the GI reflection filter, and the GI membrane can also break the restriction of the resonant excitation condition of the conventional guided-mode resonance (GMR) filter. High Q filtering features can be maintained even on the high-index substrate. The grating thickness of the GI membrane filter can be used to select the resonance wavelength with different quality factors (QFs), the reflection peak is blue-shifted, and the QF is decreased from 554.4 to 207.8 as the grating thickness is increased from 50 nm to 150 nm. The gradient coefficient of the GI membrane filter can be used to tailor the number of the reflection channels. The resonant excitations of high order waveguide modes confined in the GI membrane are responsible for the high Q filtering properties with multiple channels.

Cite this article

Download citation ▾
Jun-lang Li, Tian Sang, Jian-yu Zhou, Rui Wang, Hong-yan Shao, Yue-ke Wang. High Q reflection filter using a gradient-index membrane with a grating surface. Optoelectronics Letters 12-16 DOI:10.1007/s11801-018-7149-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

MacleodH. A.. Thin-Film Optical Filters, 2010, New York, CRC Press

[2]

JiaoH. F., DingT., ChengX. B., MaB., HeP. F., WuY. G.. Chin. Opt. Lett., 2010, 8: 1102

[3]

LiuC. C., ChangY. H., WuC. J.. J. Electromagn. Waves Appl., 2010, 24: 293

[4]

ShankarA., KumarS.. J. Opt., 2014, 43: 257

[5]

MaysmithT. C., SloyanK. A., GaziaR., EasonR. W.. Cryst. Growth Des., 2011, 11: 1098

[6]

WangZ. S., BaoG. H., JiaoH. F., MaB., ZhangJ. L., DingT., ChengX. B.. Opt. Express, 2013, 21: 30623

[7]

ChengX. B., FanB., DobrowolskiJ. A., WangL., WangZ. S.. Opt. Express, 2008, 16: 2315

[8]

TangC. J., JaingC. C., LeeK. S., LeeC. C.. Appl. Opt., 2008, 47: C167

[9]

RatsD., PoitrasD., SoroJ. M., MartinuL., StebutJ. V.. Surf. Coat. Technol., 1999, 111: 220

[10]

LappschiesM., GörtzB., RistauD.. Appl. Opt., 2006, 45: 1502

[11]

VerlyP. G.. Appl. Opt., 2008, 47: 172

[12]

ZhangJ. C., FangM., JinY. X., HeH. B.. Thin Solid Films, 2012, 520: 5447

[13]

SangT., CaiS. H., WangZ. S.. J. Mod. Opt., 2012, 58: 1260

[14]

WangS. S., MagnussonR.. Appl. Opt., 1995, 34: 2414

[15]

ZhongY., GoldenfeldZ., LiK., StreyerW., YuL., NordinL., MurphyN., WassermanD.. Opt. Lett., 2017, 42: 223

[16]

IlyasS., BöckingT., KilianK., ReeceP. J., GoodingJ., GausK., GalM.. Opt. Mater., 2007, 29: 619

[17]

OskooiA. F., RoundyD., IbanescuM., BermelP., JoannopoulosJ. D., JohnsonS. G.. Comput. Phys. Commum., 2010, 181: 687

[18]

SangT., WangY. k., LiJ. L., ZhouJ. Y., JiangW. W., WangJ. C., ChenG. Q.. Opt. Commun., 2017, 382: 138

[19]

WangQ., LiY., HuangT., WangJ. Y., ZhangD. W.. Microwave Opt. Technol. Lett., 2016, 58: 705

[20]

DongY., SongY. F., MaL., GaoF. F.. Optoelectron. Lett., 2016, 12: 329

[21]

RytovS. M.. Sov. Phys. JETP, 1956, 2: 2466

[22]

BykovD. A., DoskolovichL. L.. Opt. Express, 2015, 23: 19234

[23]

SangT., WangZ. S., WangL., WuY. G., ChenL. Y.. J. Opt. A: Pure Appl. Opt., 2006, 8: 62

[24]

WangZ. S., SangT., ZhuJ. T., WangL., WuY. G., ChenL. Y.. Appl. Phys. Lett., 2006, 89: 241119

[25]

HendrixK. D., HulseC. A., OckenfussG. J., SargentR. B.. Proc. SPIE, 2008, 7607: 706702

AI Summary AI Mindmap
PDF

77

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/