The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals

Fei-fei Xin

Optoelectronics Letters ›› : 419 -422.

PDF
Optoelectronics Letters ›› :419 -422. DOI: 10.1007/s11801-017-7183-6
Article

The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals

Author information +
History +
PDF

Abstract

The ultraviolet (UV) band edge photorefractivity of LiNbO3:Zr at 325 nm has been investigated. The experimental results show that the resistance against photorefraction at 325 nm is quite obvious but not as strong as that at 351 nm, when the doping concentration of Zr reaches 2.0 mol%. It is reported that the photorefractivity in other tetravalently doped LiNbO3 crystals, such as LiNbO3:Hf and LiNbO3:Sn, is enhanced dramatically with doping concentration over threshold. Here we give an explicit explanation on such seemly conflicting behaviors of tetravalently doped LiNbO3, which is ascribed to the combined effect of increased photoconductivity and the absorption strength of the band edge photorefractive centers.

Cite this article

Download citation ▾
Fei-fei Xin. The mechanism of the UV band edge photorefractivity suppression in highly doped LiNbO3:Zr crystals. Optoelectronics Letters 419-422 DOI:10.1007/s11801-017-7183-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SoljačiéM., JoannopoulosJ. D.. Nat. Mater., 2004, 3: 211

[2]

TianB.-l, ChenH.-x, ChogeD. K., XuY.-b, LiG.-w, LiangW.-g. Optoelectron. Lett., 2017, 13: 206

[3]

WuW.-j, MaJ.-h, PanH.-f, WuE., ChenH., Choge DismasK., LiangW.-g. Optoelectron. Lett., 2017, 13: 156

[4]

XuJ., ZhangG., LiF., ZhangX., SunQ., LiuS., SongF., KongY., ChenX., QiaoH., YaoJ., ZhaoL.. Opt. Lett., 2000, 25: 129

[5]

ZhengD., KongY., LiuS., ChenM., ChenS., ZhangL., RuppR., XuJ.. Sci. Rep., 2015, 6: 20308

[6]

XinF., ZhangG., BoF., SunH., KongY., XuJ., VolkT., RubininaN.. J. Appl. Phys., 2010, 107: 033113

[7]

KokanyanE. P., RazzariL., CristianiI., DegiorgioV., GruberB.. Appl. Phys. Lett., 2004, 84: 1880

[8]

RazzariL., MinzioniP., CristianiI., DegiorgioV., KokanyanE.. Appl. Phys. Lett., 2005, 86: 131914

[9]

KongY., LiuS., ZhaoY., LiuH., ChenS., XuJ.. Appl. Phys. Lett., 2007, 91: 081908

[10]

WangL., LiuS., KongY., ChenS., HuangZ., WuL., RuppR., XuJ.. Opt. Lett., 2010, 35: 883

[11]

XinF., ZhangG., GeX., LiuS., XuanL., KongY., XuJ.. Opt. Lett., 2011, 36: 3163

[12]

LiuF., KongY., LiW., LiuH., LiuS., ChenS., ZhangX., RuppR., XuJ.. Opt. Lett., 2010, 35: 10

[13]

UrbachF.. Phys. Rev., 1953, 92: 1324

[14]

MoserF., UrbachF.. Phys. Rev., 1956, 102: 1519

[15]

Castillo-TorresJ.. Opt. Commun., 2013, 290: 107

[16]

XinF., ZhaiZ., WangX., KongY., XuJ., ZhangG.. Phys. Rev. B, 2012, 86: 165132

[17]

ViñaL., LogothetidisS., CardonaM.. Phys. Rev. B, 1984, 30: 1979

PDF

95

Accesses

0

Citation

Detail

Sections
Recommended

/