SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes

Yong-qian Li , Xiao-juan Li , Han-bai Fan , Qi An , Lixin Zhang

Optoelectronics Letters ›› : 414 -418.

PDF
Optoelectronics Letters ›› : 414 -418. DOI: 10.1007/s11801-017-7182-7
Article

SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes

Author information +
History +
PDF

Abstract

The application of Golay pulse coding technique in spontaneous Brillouin-based distributed temperature sensor based on self-heterodyne detection of Rayleigh and Brillouin scattering is theoretically and experimentally analyzed. The enhancement of system signal to noise ratio (SNR) and reduction of temperature measurement error provided by coding are characterized. By using 16-bit Golay coding, SNR can be improved by about 2.77 dB, and temperature measurement error of the 100 m heated fiber is reduced from 1.4 °C to 0.5 °C with a spatial resolution of 13 m. The results are believed to be beneficial for the performance improvement of self-heterodyne detection Brillouin optical time domain reflectometer.

Cite this article

Download citation ▾
Yong-qian Li, Xiao-juan Li, Han-bai Fan, Qi An, Lixin Zhang. SNR improvement in self-heterodyne detection Brillouin optical time domain reflectometer using Golay pulse codes. Optoelectronics Letters 414-418 DOI:10.1007/s11801-017-7182-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

HongJ. G., SongK. Y.. Journal of Lightwave Technology, 2015, 33: 1979

[2]

JiaQ. Q., SuH. Z., FengL. L., YangM.. Journal of Optoelectronics·Laser, 2016, 27: 832

[3]

WeiT.. Journal of Optoelectronics·Laser, 2017, 28: 492

[4]

MaughanS. M., KeeH. H., NewsonT. P.. Measurement Science & Technology, 2001, 12: 834

[5]

LiX. J., LiY. Q., HuZ. Q., AnQ.. Journal of Optoelectronics ·Laser, 2016, 27: 1286

[6]

TuG. J., ZhangX. P., ZhangY. X., YingZ. F., LvL. D.. Electronics Letters, 2014, 50: 1624

[7]

OhnoH., NaruseH., KiharaM., ShimadaA.. Optical Fiber Technology, 2001, 7: 45

[8]

AdachiS.. Distributed Optical Fiber Sensors and Their Applications, 2008, 329

[9]

LiQ. Y., GanJ. L., WuY. Q., ZhangZ. S., LiJ., YangZ. M.. IEEE Photonics Technology Letters, 2016, 28: 1493

[10]

De BattistaN., KechavarziC., SogaK.. Proceedings of the SPIE, 2016, 9916: 99160U

[11]

ChangT. Y., KoscicaT. E., LiD.Y., JiaL., SuiQ. M., CuiH. L.. IEEE Sensors Journal, 2009, 9: 430

[12]

WangR. G., ZhouL. Y., ZhangX. P.. Optik, 2014, 125: 4864

[13]

ChoY. T., AlahbabiM., GunningM. J., NewsonT. P.. Optics Letters, 2003, 28: 1651

[14]

SotoM. A., SahuP. K., BologniniG., Di PasqualeF.. IEEE Sensors Journal, 2008, 8: 225

[15]

De SouzaK.. Measurement Science and Technology, 2006, 17: 1065

[16]

WoodT. H., LinkeR. A., KasperB. L., CarrE. C.. Journal of Lightwave Technology, 1988, 6: 346

[17]

WanS. P., XiongY. H., HeX. D.. IEEE Sensors Journal, 2014, 14: 2626

[18]

CuiQ. S., PamukcuS., LinA. X., XiaoW., ToulouseJ.. Microwave and Optical Technology Letters, 2010, 52: 2713

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/