Radiometric calibration of hyper-spectral imaging spectrometer based on optimizing multi-spectral band selection

Li-wei Sun , Xin Ye , Wei Fang , Zhen-lei He , Xiao-long Yi , Yu-peng Wang

Optoelectronics Letters ›› : 405 -408.

PDF
Optoelectronics Letters ›› : 405 -408. DOI: 10.1007/s11801-017-7174-7
Article

Radiometric calibration of hyper-spectral imaging spectrometer based on optimizing multi-spectral band selection

Author information +
History +
PDF

Abstract

Hyper-spectral imaging spectrometer has high spatial and spectral resolution. Its radiometric calibration needs the knowledge of the sources used with high spectral resolution. In order to satisfy the requirement of source, an on-orbit radiometric calibration method is designed in this paper. This chain is based on the spectral inversion accuracy of the calibration light source. We compile the genetic algorithm progress which is used to optimize the channel design of the transfer radiometer and consider the degradation of the halogen lamp, thus realizing the high accuracy inversion of spectral curve in the whole working time. The experimental results show the average root mean squared error is 0.396%, the maximum root mean squared error is 0.448%, and the relative errors at all wavelengths are within 1% in the spectral range from 500 nm to 900 nm during 100 h operating time. The design lays a foundation for the high accuracy calibration of imaging spectrometer.

Cite this article

Download citation ▾
Li-wei Sun, Xin Ye, Wei Fang, Zhen-lei He, Xiao-long Yi, Yu-peng Wang. Radiometric calibration of hyper-spectral imaging spectrometer based on optimizing multi-spectral band selection. Optoelectronics Letters 405-408 DOI:10.1007/s11801-017-7174-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KimT. H., KongH. J., KimT. H., ShinJ. S.. Optics Communications, 2010, 283: 355

[2]

ChanderG., MarkhamB. L., HelderD. L.. Remote Sensing of Environment, 2009, 113: 893

[3]

BaumgartnerA., GegePe.ter, KöhlerC. H.. Karim Lenhard and Thomas Schwarzmaier, 2012, 8533: 85331H

[4]

OudrariH., McintireJ., XiongX., ButlerJ., JiJ., SchwartingT., LeeS., EfremovaB.. Journal of Remote Sensing, 2016, 8: 1

[5]

EppeldauerG. P., BrownS. W., LarasonT. C., RaczM., LykkeK. R.. Metrologia, 2000, 37: 531

[6]

ButlerJ. J., BarnesR. A.. Metrologia, 2003, 40: S70

[7]

ThuillierG., FoujolsT., BolséeD., GillotayDi.dier, HerséM., PeetermansW., DecuyperW., MandelH., SperfeldP., PapeS., TaubertD. R., HartmannJ.. Solar Physics, 2009, 257: 185

[8]

UpretyS., CaoC., BlonskiS.. International Journal of Remote Sensing, 2016, 37: 5472

[9]

LiZ.. Chinese Optics, 2015, 8: 909

[10]

YoonH. W., GibsonC. E., BarnesP. Y.. Metrologia, 2003, 40: S172

[11]

TaubertR. D., MonteC., BaltruschatC., SchirmacherA., GutschwagerB., HartmannJ., HollandtJ., KochemsD., KüchelC., te PlateM.. Metrologia, 2009, 46: S207

[12]

FolkmanM., PearlamnJ., LiaoL., areekeP. J.. Proc. SPIE, 2001, 4151: 40

[13]

MarmoJ., FolkmanM. A., KuwaharaC. Y., WilloughbyC. T.. Proc. SPIE, 1996, 2819: 80

[14]

Carol JohnsonB., BrownS. W., EppeldauerG., LykkeK. R.. International Journal of Remote Sensing, 2003, 24: 339

[15]

ButlerJ. J., BarnesR. A.. Metrologia, 2003, 40: 70

[16]

ZhaoW., FangW., SunL., CuiL., WangY.. Chinese Physical B, 2015, 25: 090701

[17]

HuangB., DaiC., YvJ.. Journal of Applied Optics, 2009, 30: 44

[18]

KeefJ. L., ThomeK. J.. Journal of Applied Remote Sensing, 2008, 3: 033518

[19]

AndersonN., ThomeK., BiggarS. F., Czapla-MyersJ.. Proc. SPIE, 2008, 7081: 1

[20]

ShiJ., HuX., XuW., ZhengX.. Journal of Atmospheric and Environmental Optics, 2014, 9: 37

[21]

JareckeP., YokoyamaK., BarryP.. Proc. SPIE, 2002, 6: 2825

AI Summary AI Mindmap
PDF

69

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/