Theoretical analysis of stimulated polariton scattering from the A1-symmetry modes of KNbO3 crystal

Zhong-yang Li , Meng-tao Wang , Si-lei Wang , Bin Yuan , De-gang Xu , Jian-quan Yao

Optoelectronics Letters ›› : 339 -343.

PDF
Optoelectronics Letters ›› : 339 -343. DOI: 10.1007/s11801-017-7138-y
Article

Theoretical analysis of stimulated polariton scattering from the A1-symmetry modes of KNbO3 crystal

Author information +
History +
PDF

Abstract

Stimulated polariton scattering (SPS) based on noncollinear phase matching scheme from the A1-symmetry modes of KNbO3 crystal is investigated for generating terahertz (THz) wave. Frequency tuning characteristics of THz wave by varying the phase matching angle and pump wavelength are analyzed. The expression of the effective parametric gain length under the noncollinear phase matching condition is deduced. Parametric gain and absorption characteristics of THz wave in KNbO3 are theoretically simulated. The characteristics of KNbO3 for parametric oscillator (TPO) are compared with those of MgO:LiNbO3. The analysis results indicate that KNbO3 is an excellent optical crystal for TPO to enhance the output of THz wave.

Cite this article

Download citation ▾
Zhong-yang Li, Meng-tao Wang, Si-lei Wang, Bin Yuan, De-gang Xu, Jian-quan Yao. Theoretical analysis of stimulated polariton scattering from the A1-symmetry modes of KNbO3 crystal. Optoelectronics Letters 339-343 DOI:10.1007/s11801-017-7138-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KurooK, HasegawaR, TanabeT, OyamaY. Journal of Imaging, 2017, 3: 27

[2]

HanJ W, KimM S, SongM S, KangB Y, ChoB K, LeeJ S. Applied Optics, 2017, 56: 2529

[3]

PecciantiM, FastampaR, Mosca ConteA, PulciO, ViolanteC, ŁojewskaJ, ClericiM, MorandottiR, MissoriM. Physical Review Applied, 2017, 7: 064019

[4]

ItoK, KatagiriT, MatsuuraY. Journal of the Optical Society of America B, 2017, 34: 60

[5]

PorokhovnichenkoD L, VoloshinovV B, DyakonovE A, KomandinG A, SpektorI E, TravkinV D. Physics of Wave Phenomena, 2017, 25: 114

[6]

ChouS G, StutzmanP E, ProvenzanoV, McMichaelR D, SurekJ, WangS, PlusquellicD F, GarbocziE J. Applied Magnetic Resonance, 2017, 48: 559

[7]

KawaseK, ShikataJ, ItoH. Journal of Physics D: Applied Physics, 2002, 35: R1

[8]

OrtegaT A, PaskH M, SpenceD J, LeeA J. Optics Express, 2017, 25: 3991

[9]

ZhangR, QuY, ZhaoW, ChenZ. Applied Optics, 2017, 56: 2412

[10]

WangY, TangL, XuD, YanC, HeY, ShiJ, YanD, LiuH, NieM, FengJ, YaoJ. Optics Express, 2017, 25: 8926

[11]

HuangN, LiuH, SunQ, WangZ, LiS, HanJ. Laser Phys. Lett., 2016, 13: 055802

[12]

SowadeR, BreunigI, TuleaC, BuseK. Appl. Phys. B, 2010, 99: 63

[13]

MolterD, TheuerM, BeigangR. Optics Express, 2009, 17: 6623

[14]

ZyssetB, BiaggioI, GünterP. Journal of the Optical Society of America B, 2009, 9: 380

[15]

BiaggioI, KerkocP, WuL S, GünterP, ZyssetB. Journal of the Optical Society of America B, 1992, 9: 507

[16]

SeelertW, KortzP, RytzD, ZyssetB, EllgehausenD, MizellG. Optics Letters, 1992, 17: 1432

[17]

BozinisD G, HurrellJ P. Physical Review B, 1976, 13: 3109

[18]

IkariT, ZhangX, MinamideH, ItoH. Optics Express, 2006, 14: 1604

[19]

BrosnanS J, ByerR L. IEEE J. Quantum Electron., 1979, 15: 415

[20]

SussmanS STunable Light Scattering from Transverse Optical Modesin Lithium Niobate, Stanford UniversityMicrowave Laboratory Report No.1851, 1970, 22

AI Summary AI Mindmap
PDF

72

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/