Effects of K ions doping on the structure, morphology and optical properties of Cu2FeSnS4 thin films prepared by blade-coating process

Shuo Wang , Rui-xin Ma , Cheng-yan Wang , Shi-na Li , Hua Wang

Optoelectronics Letters ›› : 291 -294.

PDF
Optoelectronics Letters ›› : 291 -294. DOI: 10.1007/s11801-017-7108-4
Article

Effects of K ions doping on the structure, morphology and optical properties of Cu2FeSnS4 thin films prepared by blade-coating process

Author information +
History +
PDF

Abstract

Quaternary chalcogenide Cu2FeSnS4 (CFTS) nanoparticles, as a kind of potential absorber layer material in thin film solar cells (TFSCs), were successfully synthesized by using a convenient solvothermal method. Alkali element K is incorporated into CFTS thin films in order to further improve the surface morphology and the optical properties of related films. X-ray diffraction (XRD), Raman spectroscopy and field emission scanning electron microscopy (FESEM) were used to characterize the phase purity, morphology and composition of CFTS particles and thin films. The results show that the particle elemental ratios of Cu/(Fe+Sn) and Fe/Sn are 1.2 and 0.9, respectively, which are close to the characteristics of stoichiometric CFTS. The band gaps of CFTS films before and after doping K ions are estimated to be 1.44 eV and 1.4 eV with an error of ±0.02 eV.

Cite this article

Download citation ▾
Shuo Wang, Rui-xin Ma, Cheng-yan Wang, Shi-na Li, Hua Wang. Effects of K ions doping on the structure, morphology and optical properties of Cu2FeSnS4 thin films prepared by blade-coating process. Optoelectronics Letters 291-294 DOI:10.1007/s11801-017-7108-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

BiJ, AoJ, JengM-J, YaoL, GaoS, SunG, HeQ, ZhouZ, SunY, XiaoY-L, ChangL-B. Solar Energy Materials and Solar Cells, 2017, 159: 352

[2]

W-h, LUB, GONGY, HEY-f, ZHANGS. Journal of Optoelectronics·Laser, 2016, 27: 606

[3]

FENGS-j, XUEY-m, LIUH, SONGD-y, XIAD, SUNH-t, LIP-y, QIAOZ-x. Journal of Optoelectronics·Laser, 2017, 28: 285

[4]

DongC, MengW, QiJ, WangM. Materials Letters, 2017, 189: 104

[5]

ChatterjeeS, PalA J. Solar Energy Materials and Solar Cells, 2017, 160: 233

[6]

MengX, DengH, TaoJ, CaoH, LiX, SunL, YangP, ChuJ. Journal of Alloys and Compounds, 2016, 680: 446

[7]

MengX, DengH, ZhangJ, ZhouW, TaoJ, SunL, YueF, YangP, ChuJ. Journal of Alloys and Compounds, 2015, 646: 68

[8]

GranathK, BodegardM, StoltL. Solar Energy Materials and Solar Cells, 2000, 60: 278

[9]

RudmannD, BremaudD, da CunhaAF, BilgerG, StrohmA, KaelinM, ZoggH, TiwariAN. Thin Solid Films, 2005, 480: 55

[10]

TanM, HeR, YuanY, WangZ, JinX. Electrochimica Acta, 2016, 213: 148

[11]

KhadkaD B, KimJ. Journal of Alloys and Compounds, 2015, 638: 103

[12]

MokuralaK, MallickS. RSC Advances, 2017, 7: 15139

[13]

MengX, DengH, ZhangQ, SunL, YangP, ChuJ. Materials Letters, 2017, 186: 138

[14]

ZhouJ, YeZ, WangY, YiQ, WenJ. Materials Letters, 2015, 140: 119

[15]

Di BenedettoF, BencistàI, D’AcapitoF, FrizzeraS, CaneschiA, InnocentiM, LavacchiA, MontegrossiG, OberhauserW, RomanelliM, DittrichH, PardiL A, TippeltG, AmthauerG. Physics and Chemistry of Minerals, 2016, 43: 535

[16]

KevinP, MalikM A, McadamsS, O’BrienP. Journal of the American Chemical Society, 2015, 137: 15086

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/