Nd3+ doped fluorochlorozirconate glass: 3.9 μm MIR emission properties and energy transfer

Ming Yan, Xiao-song Zhang, Lan Li, Zhao-jun Mo, Han Jin, Qi Ding, Wen-long Ding

Optoelectronics Letters ›› , Vol. 13 ›› Issue (5) : 344-348.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (5) : 344-348. DOI: 10.1007/s11801-017-7107-5
Article

Nd3+ doped fluorochlorozirconate glass: 3.9 μm MIR emission properties and energy transfer

Author information +
History +

Abstract

The Nd3+ doped fluorochlorozirconate (FCZ) glass was prepared by melt-quenching method. The 3.9 μm emission from Nd3+ ions is attributed to the two-photon absorption process. The strong emission transition at 3.9 μm fluorescence peak intensity, corresponding to the 4G11/22K13/2 transition, is directly proportional to the NaCl concentration. With the increase of the Cl- ions amount, the mid-infrared (MIR) luminescent intensity is significantly enhanced. Additionally, the Judd-Ofelt (J-O) parameter Ω2 is larger than that of the fluorozirconate (FZ) glass, which indicates the covalency of the bond between RE ions and ligand is stronger as Cl- ions substitution of F- ions in chloride FZ glass. The X-ray diffraction (XRD) patterns show that the amorphous glassy state keeps the FZ glass network structure. In brief, the advantageous spectroscopic characteristics make the Nd3+-doped FCZ glass be a promising candidate for application of 3.9 μm emission.

Cite this article

Download citation ▾
Ming Yan, Xiao-song Zhang, Lan Li, Zhao-jun Mo, Han Jin, Qi Ding, Wen-long Ding. Nd3+ doped fluorochlorozirconate glass: 3.9 μm MIR emission properties and energy transfer. Optoelectronics Letters, , 13(5): 344‒348 https://doi.org/10.1007/s11801-017-7107-5

References

[1]
YaoY, HoffmanA J, GmachlC F. Nature Photonics, 2012, 6: 432
CrossRef Google scholar
[2]
YangS, WangX, GuoH, DongG, PengB, QiuJ, ShiY. Optics Express, 2011, 19: 26529
CrossRef Google scholar
[3]
LiX, YuX, SunZ, YanZ, SunB, ChengY, WangQ J. Scientific Reports, 2015, 5: 16624
CrossRef Google scholar
[4]
YuN, FanJ, WangQ J, PflüglC, DiehlL, EdamuraT, CapassoF. Nature Photonics, 2008, 2: 564
CrossRef Google scholar
[5]
JacksonS D, PollnauM, LiJ. Journal of Quantum Electronics, 2011, 47: 471
CrossRef Google scholar
[6]
XuY, ZhangX, DaiS, FanB, MaH, AdamJ L, ChenG. The Journal of Physical Chemistry C, 2011, 115: 13056
CrossRef Google scholar
[7]
TianY, XuR, HuL, ZhangJ. Journal of Applied Physics, 2011, 110: 033502
CrossRef Google scholar
[8]
PfauC, BohleyC, MicleaP T, SchweizerS. Journal of Applied Physics, 2011, 109: 083545
CrossRef Google scholar
[9]
DrexhageM G, El BayoumiO H, MoynihanC T, BruceA J, ChungK H, GavinD L, LoretzT J. Chemischer Informationsdienst, 1983, 14
[10]
MoonS C, MatsumuraY, KitanoM, MatsuokaM, AnpoM. Research on Chemical Intermediates, 2003, 29: 233
CrossRef Google scholar
[11]
AhrensB L P, GoldschmidtJ C, GlunzS, HenkeB, MicleaP T, SchweizerS. Physica Status Solidi (a), 2008, 205: 2822
CrossRef Google scholar
[12]
StouwdamJ W, van VeggelF C. Nano Letters, 2002, 2: 733
CrossRef Google scholar
[13]
KlimczakM, MalinowskiM, PiramidowiczR. Optical Materials, 2009, 31: 1811
CrossRef Google scholar
[14]
SunZ, MeiB, LiW, LiuX, SuL. Optical Materials, 2016, 8: 32984
[15]
HendyS C, EdgarA. Journal of Non-crystalline Solids, 2006, 352: 415
CrossRef Google scholar
[16]
SogaK, InoueH, MakishimaA. Journal of Non-crystalline Solids, 2000, 274: 69
CrossRef Google scholar
[17]
ShenY, ShengQ, LiuS, LiW, ChenD. Chinese Optics Letters, 2013, 11: 051601
CrossRef Google scholar
[18]
ZhouB, TaoL, TsangY H, JinW, PunE Y B. Optics Express, 2012, 20: 12205
CrossRef Google scholar
[19]
FakhraN, SaharM R, GhoshalS K, RajaR. J Amjad and Asmahani Awang, Chinese Optics Letters, 2013, 11: 1605
[20]
YangZ, XuS, HuL, JiangZ. Journal of the Optical Society of America B, 2004, 21: 951
CrossRef Google scholar
[21]
TianY, XuR, HuL, ZhangJ. Journal of Luminescence, 2012, 132: 128
CrossRef Google scholar
[22]
WeberM J, ZieglerD C, AngellC A. Journal of Applied Physics, 1982, 53: 4344
CrossRef Google scholar
[23]
BabuP, SeoH J, JangK H, BalakrishnaiahR, JayasankarC K, LimK S, LavínV. Journal of the Optical Society of America B, 2007, 24: 2218
CrossRef Google scholar
[24]
TanabeS, OhyagiT, TodorokiS, HanadaT, SogaN. Journal of Applied Physics, 1993, 73: 8451
CrossRef Google scholar
[25]
TanabeS, OhyagiT, SogaN, HanadaT. Physical Review B, 1992, 46: 3305
CrossRef Google scholar
[26]
StanleyA T, HarrisE A, SearleT M, ParkerJ M. Journal of Non-crystalline Solids, 1993, 161: 235
CrossRef Google scholar

This work has been supported by the National High Technology Research and Development Program of China (No.2013AA014201), the Natural Science Foundation of Tianjin (Nos.11JCYBJC00300, 14JCZDJC31200, 15JCYBJC16700 and 15JCYBJC16800), the National Key Foundation for Exploring Scientific Instrument of China (No.2014YQ120351), and International Cooperation Program from Science and Technology of Tianjin (No.14RCGHGX00872).

Accesses

Citations

Detail

Sections
Recommended

/