Design and fabrication of 25-channel 200 GHz AWG based on Si nanowire waveguides

Kai-li Li , Jia-shun Zhang , Jun-ming An , Jian-guang Li , Liang-liang Wang , Yue Wang , Yuan-da Wu , Xiao-jie Yin , Xiong-wei Hu

Optoelectronics Letters ›› : 241 -244.

PDF
Optoelectronics Letters ›› : 241 -244. DOI: 10.1007/s11801-017-7076-8
Article

Design and fabrication of 25-channel 200 GHz AWG based on Si nanowire waveguides

Author information +
History +
PDF

Abstract

A 25-channel 200 GHz arrayed waveguide grating (AWG) based on Si nanowire waveguides is designed, simulated and fabricated. Transfer function method is used in the simulation and error analysis of AWG with width fluctuations. The 25-channel 200 GHz AWG exhibits central channel insertion loss of 6.7 dB, crosstalk of −13 dB, and central wavelength of 1 560.55 nm. The error analysis can explain the experimental results of 25-channel 200 GHz AWG well. By using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technologies, the devices are fabricated on silicon- on-insulator (SOI) substrate.

Cite this article

Download citation ▾
Kai-li Li, Jia-shun Zhang, Jun-ming An, Jian-guang Li, Liang-liang Wang, Yue Wang, Yuan-da Wu, Xiao-jie Yin, Xiong-wei Hu. Design and fabrication of 25-channel 200 GHz AWG based on Si nanowire waveguides. Optoelectronics Letters 241-244 DOI:10.1007/s11801-017-7076-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yu Kurata, Yusuke Nasu, Munehisa Tamura, Ryoichi Kasahara, Shinichi Aozasa, Takayuki Mizuno, Haruki Yokoyama, Satoshi Tsunashima, and Yoshifumi Muramoto, Optics Express 20, B264 (2012).

[2]

FangQ., LiowT. Y., SongJ. F., AngK. W., YuM. B., LoG. Q., KwongD. L.. Optics Express, 2010, 18: 5106

[3]

WimB., RoelB., PieterD., VincentW., StephanB., DirkT., BertL., Van JorisC., PeterB., Van DriesT.. Journal of Lightwave Technology, 2005, 23: 401

[4]

ZuoY., LiH., ZhaiJ., TangN., SongS., LiQ.. Journal of Semiconductors, 2015, 36: 054005-1

[5]

FangQ., SongJ., ZhangG., YuM., LiuY., LoG. Q., KwongD. L.. IEEE Photonics Technology Letters, 2009, 21: 319

[6]

ChengZ., YanG., NiW., ZhuD., NiH., LiJ., ChenS., LiuG.. Journal of Semiconductors, 2016, 37: 055007-1

[7]

HorstF., GreenW. M. J., AssefaS., StevenM. S., YuriiA. V., BertJ. O.. Optics express, 2013, 21: 11652-1

[8]

WuW., AnX., TanF., FengH., ChenY., LiuJ., ZhangX., HuangR.. Journal of Semiconductors, 2015, 36: 114004-1

[9]

LauermannM., PalmerR., KoeberS., SchindlerP. C., KornD., WahlbrinkT., BoltenJ., WaldowM., ElderD. L., DaltonL. R., LeutholdJ., FreudeW., KoosC.. Optics Express, 2014, 22: 29927

[10]

ChenL., ChenX., ZhangY., LiZ., YangL.. Journal of Semiconductors, 2015, 36: 065004-1

[11]

ParkS., KimK. J., KimI. G., KimG.. Optics Express, 2011, 19: 13531

[12]

H. P. S. Assefa, F. Horst, C. L. Schow, A. V. Rylyakov, W. M. J. Green, M. H. Khater, S. Kamlapurka, C. Reinholm, E. Kiewra, S. M. Shank, C. W. Baks, B. J. Offrein and Y. A. Vlasov, 250 Gbps 10-Channel WDM Silicon Photonics Receiver, IEEE 9th International Conference on Group IV Photonics, 162 (2012).

[13]

T. Pinguet, B. Analui, G. Masini, V. Sadagopan and S. Gloeckner, 40 Gbps Monolithically Integrated Transceivers in CMOS Photonics, Conference on Silicon Photonics III, 689805 (2008).

[14]

WangJ., ShengZ., LiL., PangA., WuA., LiW., WangX., ZouS., QiM., GanF.. Optics Express, 2014, 22: 9395

[15]

YuanP., WuY., WangY., AnJ., HuX.. Journal of Semiconductors, 2015, 36: 084005-1

[16]

YeT., FuY., QiaoL., ChuT.. Optics Express, 2014, 22: 31899

[17]

PathakS., VanslembrouckM., DumonP., ThourhoutD. V., VerheyenP.. IEEE Photonics Technology Letters, 2014, 26: 718

[18]

PathakS., VanslembrouckM., DumonP., ThourhoutD. V., BogaertsW.. Journal of Lightwave Technology, 2013, 31: 87

[19]

TakahashiH., OdaK., TobaH., InoueY.. Journal of Lightwave Technology, 1995, 13: 447

[20]

D. V. Thourhout, M. Vanslembrouck, P. Dumon, S. Pathak and W. Bogaerts, Optics Express 20, B493 (2012).

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/