A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser

Xin-yang Li , Ye Cao , Dong Xu , Zheng-rong Tong , Jing-peng Yang

Optoelectronics Letters ›› : 259 -262.

PDF
Optoelectronics Letters ›› : 259 -262. DOI: 10.1007/s11801-017-7071-0
Article

A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser

Author information +
History +
PDF

Abstract

A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser is proposed and demonstrated. The multi-wavelength fiber laser generates the multi-taps of the microwave photonic filter (MPF). In order to obtain notch frequency response, a Fourier-domain optical processor (FD-OP) is introduced to control the amplitude and phase of the optical carrier and phase modulation sidebands. By adjusting the polarization controller (PC), different numbers of taps are got, such as 6, 8, 10 and 12. And the wavelength spacing of the multi-wavelength laser is 0.4 nm. The bandwidth of the notch filter is changed by adjusting the number of taps and the corresponding bandwidths are 4.41 GHz, 3.30 GHz, 2.64 GHz and 2.19 GHz, respectively. With the additional phase shift introduced by FD-OP, the notch position is continuously tuned in the whole free spectral range (FSR) of 27.94 GHz. The center frequency of the notch filter can be continuously tuned from 13.97 GHz to 41.91 GHz.

Cite this article

Download citation ▾
Xin-yang Li, Ye Cao, Dong Xu, Zheng-rong Tong, Jing-peng Yang. A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser. Optoelectronics Letters 259-262 DOI:10.1007/s11801-017-7071-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

CapmanyJ., MoraJ., GasullaI.. Journal of Lightwave Technology, 2013, 31: 571

[2]

MinasianR. A., ChanE. H. W., YiX.. Opt. Express, 2013, 21: 22918

[3]

CapmanyJ., OrtegaB., PastorD.. Journal of Lightwave Technology, 2006, 24: 201

[4]

YaoJ.. Journal of Lightwave Technology, 2009, 27: 314

[5]

XuE.-m., WangQ., WangF.. Optoelectronics Letters, 2014, 10: 374

[6]

ZhangA.-l., HuangC., WuX.-j.. Optoelectronics Letters, 2014, 10: 5

[7]

XuX., OuH., WongK.. IEEE Photon. Technol. Lett., 2014, 26: 893

[8]

FengX., LuC., TamH. Y.. IEEE Photon. Technol. Lett., 2007, 19: 1334

[9]

XueX., ZhengX., ZhangH.. Opt. Express, 2012, 20: 26929

[10]

LiW., ZhouN.H., HuangL.X.. IEEE Photon. J., 2011, 3: 462

[11]

ZhangC., YanL.S., PanW.. IEEE Photon. J., 2013, 5: 5501606

[12]

LiW., WangL. X., ZhuN. H.. IEEE Photon. J., 2013, 5: 5501411

[13]

YaoX. S.. IEEE Photon. Technol. Lett., 1998, 10: 138

[14]

ZhangW., MinasianR. A.. IEEE Photon. Technol. Lett., 2011, 23: 1775

[15]

ZhangW., MinasianR. A.. IEEE Photon. Technol. Lett., 2012, 24: 1182

[16]

HanX., YaoJ.. Journal of Lightwave Technology, 2015, 33: 5133

[17]

XuE., YaoJ.. IEEE Photon. Technol. Lett., 2015, 27: 2063

[18]

HaoX., TongZ., CaoY.. Applied Optics, 2014, 53: 4519

[19]

WangX., YangJ., ChanE.H.W.. IEEE Photon. J., 2015, 7: 5500411

AI Summary AI Mindmap
PDF

76

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/