Synthesis of monoclinic structure gallium oxide film on sapphire substrate by magnetron sputtering

Jian-xu Sun , Wei Mi , De-shuang Zhang , Zheng-chun Yang , Kai-liang Zhang , Ye-mei Han , Yu-jie Yuan , Jin-shi Zhao , Bo Li

Optoelectronics Letters ›› : 295 -298.

PDF
Optoelectronics Letters ›› : 295 -298. DOI: 10.1007/s11801-017-7065-y
Article

Synthesis of monoclinic structure gallium oxide film on sapphire substrate by magnetron sputtering

Author information +
History +
PDF

Abstract

Gallium oxide (Ga2O3) films were deposited on singlecrystalline sapphire (0001) substrate by radio frequency (RF) magnetron sputtering technique in the temperature range of 300—500 °C. The microstructure of the β-Ga2O3 films were investigated in detail using X-ray diffractometer (XRD) and scanning electron microscope (SEM). The results show that the film prepared at 500 °C exhibits the best crystallinity with a monoclinic structure (β-Ga2O3). Structure analysis reveals a clear out-of-plane orientation of β-Ga2O3 (2̅01) ǁ Al2O3 (0001). The average transmittance of these films in the visible wavelength range exceeds 90%, and the optical band gap of the films varies from 4.68 eV to 4.94 eV which were measured by an ultraviolet-visible-near infrared (UV-vis-NIR) spectrophotometer. Therefore, it is hopeful that the β-Ga2O3 film can be used in the UV optoelectronic devices.

Cite this article

Download citation ▾
Jian-xu Sun, Wei Mi, De-shuang Zhang, Zheng-chun Yang, Kai-liang Zhang, Ye-mei Han, Yu-jie Yuan, Jin-shi Zhao, Bo Li. Synthesis of monoclinic structure gallium oxide film on sapphire substrate by magnetron sputtering. Optoelectronics Letters 295-298 DOI:10.1007/s11801-017-7065-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WagerJ. F., KeszlerD. A., PresleyR. E.. Science, 2003, 300: 1245

[2]

ZhouH., SiM., AlghamdiS., GuangQ., YangL., Peide YeD.. IEEE Electron Device Letters, 2017, 38: 103

[3]

WuQ. H., SongJ., KangJ., DongQ. F., WuS. T., SunS. G.. Materials Letters, 2007, 61: 3679

[4]

RoyR., HillV. G., OsbornE. F.. Journal of American Chemical Society, 1952, 74: 719

[5]

PasquevichA. F., UhrmacherM., ZiegelerL., LiebK. P.. Physical Review B, 1993, 48: 10052

[6]

BaldiniM., AlbrechtM., FiedlerA., IrmscherK., KlimmD., SchewskiR., WagnerG.. Journal of Materials Science, 2016, 51: 3650

[7]

HosonoH.. Thin Solid Films, 2007, 515: 6000

[8]

OritaM., HiramatsuH., OhtaH., HiranoM., HosonoH.. Thin Solid Films, 2002, 411: 134

[9]

ChanC. H., LinM. H., ChaoL. C., LeeK. Y., TienL. C., HoC. H.. Journal of Physical Chemistry C, 2016, 120: 21983

[10]

ZhuK., WangH., XiaoF., XuF.. Journal of Materials Science: Materials in Electronics, 2017, 28: 7302

[11]

OritaM., OhtaH., HiranoM., HosonoH.. Applied Physics Letters, 2000, 77: 4166

[12]

GollakotaP., DhawanA., WelleniusP., LunardiL. M., MuthaJ. F., SaripalliY. N., PengH.Y., EverittH. O.. Applied Physics Letters, 2006, 88: 221906

[13]

OshimaT., AraiN., SuzukiN., OhiraS., FujitaS.. Thin Solid Films, 2008, 516: 5768

[14]

KimH. W., KimN. H.. Materials Science and Engineering: B, 2004, 110: 34

[15]

KimH. W., KimN. H.. Applied Surface Science, 2004, 230: 301

[16]

KokubunY., MiuraK., EndoF., NakagomiS.. Applied Physics Letters, 2007, 90: 031912

[17]

XiaoH. D., MaH. L., XueC.h. S.h., ZhuangH. Z., MaJ., ZongF. J., ZhangX. J.. Materials Chemistry & Physics, 2007, 101: 99

[18]

HuesoJ. L., EspinósJ. P., CaballeroA., CotrinoJ., González-ElipeA. R.. Carbon, 2007, 45: 89

[19]

LvY., MaJ., MiW., LuanC., ZhuZ., XiaoH. D.. Vacuum, 2012, 86: 1850

[20]

MillsG., LiZ.G., DanM.. Journal of Physical Chemistry, 1988, 92: 822

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/