Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

Aasma Tabassum, Jie Zhou, Bing Han, Xiao-wu Ni, Maryam Sardar

Optoelectronics Letters ›› , Vol. 13 ›› Issue (4) : 299-303.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (4) : 299-303. DOI: 10.1007/s11801-017-7062-1
Article

Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

Author information +
History +

Abstract

The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.

Cite this article

Download citation ▾
Aasma Tabassum, Jie Zhou, Bing Han, Xiao-wu Ni, Maryam Sardar. Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures. Optoelectronics Letters, , 13(4): 299‒303 https://doi.org/10.1007/s11801-017-7062-1

References

[1]
WilliamsJ. C., StarkeE. A.. Acta Materialia, 2003, 51: 5775
CrossRef Google scholar
[2]
HanG. M., ZhaoJ., LiJ. Q.. Materials & Design, 2007, 28: 240
CrossRef Google scholar
[3]
SangW. H., LinL., WangL., MinJ. H., ZhuJ. J., WangM. R.. Optoelectronics Letters, 2016, 12: 178
CrossRef Google scholar
[4]
NemecP., NazabalV.. Optoelectronics Letters, 2016, 12: 199
CrossRef Google scholar
[5]
KatayamaS., KobayashiY., MizutaniM., MatsunawaA.. Journal of Laser Applications, 2001, 13: 187
CrossRef Google scholar
[6]
KatayamaS., AbeY., MizutaniM., KawahitoY.. Transactions of JWRI, 2011, 40: 15
[7]
FabbroR., HiranoK., PangS.. Journal of Laser Applications, 2016, 28: 022427
CrossRef Google scholar
[8]
AmaraE. H., KheloufiK., TamsaoutT., FabbroR., HiranoK.. Applied Physics A, 2015, 119: 1245
CrossRef Google scholar
[9]
MutluM., KacarE., AkmanE., AkkanK. S., DemirP., DemirA.. Journal of Laser Micro/Nanoengineering, 2009, 4: 84
CrossRef Google scholar
[10]
CiganovicJ., ZivkovicS., MomcilovicM., SavovicJ., KuzmanovicM., StoiljkovicM., TrticaM.. Optical and Quantum Electronics, 2016, 48: 1
CrossRef Google scholar
[11]
GyörgyE. D., PinoA. P., SerraP., MorenzaJ. L.. Surface and Coatings Technology, 2004, 187: 245
CrossRef Google scholar
[12]
TrticaM., GakovicB., BataniD., DesaiT., PanjanP., RadakB.. Applied Surface Science, 2006, 253: 2551
CrossRef Google scholar
[13]
SreckovicM., MilosavljevicA., KovacevicA., GospavicR., TrticaM., RisticZ., Cantrak. FME Transactions, 2008, 36: 167
[14]
JianglongL., QiquanL., ZhirongZ.. Surface and Coatings Technology, 1993, 57: 191
CrossRef Google scholar
[15]
ChenX., WuG., WangR., GuoW., YangJ., CaoS., HanW.. Surface and Coatings Technology, 2007, 201: 4843
CrossRef Google scholar
[16]
StasicJ., TrticaM., GakovicB., BataniD., DesaiT., BrankovicG.. Applied Surface Science, 2009, 255: 8221
CrossRef Google scholar
[17]
DemirP., KacarE., AkmanE., DemirA.. Acta Physica Polonica A, 2014, 125: 439
CrossRef Google scholar
[18]
RegY., LeitzK. H., SchmidtM.. Physics Procedia, 2011, 12: 182
CrossRef Google scholar
[19]
WynneA. E., StuartB. C.. Applied physics A, 2003, 76: 373
CrossRef Google scholar
[20]
MustafaF. F.. Al-Khwarizmi Engineering Journal, 2008, 4: 98
[21]
ZhaoX., ShinY. C.. Applied Surface Science, 2013, 283: 94
CrossRef Google scholar
[22]
GaneevR. A., BoltaevG. S., TugushevR. I., UsmanovT.. Applied Physics A: Materials Science & Processing, 2010, 100: 119
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China for Young Scholars (No.11402120), the Jiangsu Provincial Natural Science Foundation for Young Scholars (No.BK20140796), and the Fundamental Research Funds for the Central Universities (No.30915015104).

Accesses

Citations

Detail

Sections
Recommended

/