Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

Aasma Tabassum , Jie Zhou , Bing Han , Xiao-wu Ni , Maryam Sardar

Optoelectronics Letters ›› : 299 -303.

PDF
Optoelectronics Letters ›› : 299 -303. DOI: 10.1007/s11801-017-7062-1
Article

Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures

Author information +
History +
PDF

Abstract

The interaction of continuous wave (CW) fiber laser with Ti-6Al-4V alloy is investigated numerically and experimentally at different laser fluence values and ambient pressures of N2 atmosphere to determine the melting time threshold of Ti-6Al-4V alloy. A 2D-axisymmetric numerical model considering heat transfer and laminar flow is established to describe the melting process. The simulation results indicate that material melts earlier at lower pressure (8.0 Pa) than at higher pressure (8.8×104 Pa) in several milliseconds with the same laser fluence. The experimental results demonstrate that the melting time threshold at high laser fluence (above 1.89×108 W/m2) is shorter for lower pressure (vacuum), which is consistent with the simulation. While the melting time threshold at low laser fluence (below 1.89×108 W/m2) is shorter for higher pressure. The possible aspects which can affect the melting process include the increased heat loss induced by the heat conduction between the metal surface and the ambient gas with the increased pressure, and the absorption variation of the coarse surface resulted from the chemical reaction.

Cite this article

Download citation ▾
Aasma Tabassum, Jie Zhou, Bing Han, Xiao-wu Ni, Maryam Sardar. Numerical simulation and experimental investigation of Ti-6Al-4V melted by CW fiber laser at different pressures. Optoelectronics Letters 299-303 DOI:10.1007/s11801-017-7062-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WilliamsJ. C., StarkeE. A.. Acta Materialia, 2003, 51: 5775

[2]

HanG. M., ZhaoJ., LiJ. Q.. Materials & Design, 2007, 28: 240

[3]

SangW. H., LinL., WangL., MinJ. H., ZhuJ. J., WangM. R.. Optoelectronics Letters, 2016, 12: 178

[4]

NemecP., NazabalV.. Optoelectronics Letters, 2016, 12: 199

[5]

KatayamaS., KobayashiY., MizutaniM., MatsunawaA.. Journal of Laser Applications, 2001, 13: 187

[6]

KatayamaS., AbeY., MizutaniM., KawahitoY.. Transactions of JWRI, 2011, 40: 15

[7]

FabbroR., HiranoK., PangS.. Journal of Laser Applications, 2016, 28: 022427

[8]

AmaraE. H., KheloufiK., TamsaoutT., FabbroR., HiranoK.. Applied Physics A, 2015, 119: 1245

[9]

MutluM., KacarE., AkmanE., AkkanK. S., DemirP., DemirA.. Journal of Laser Micro/Nanoengineering, 2009, 4: 84

[10]

CiganovicJ., ZivkovicS., MomcilovicM., SavovicJ., KuzmanovicM., StoiljkovicM., TrticaM.. Optical and Quantum Electronics, 2016, 48: 1

[11]

GyörgyE. D., PinoA. P., SerraP., MorenzaJ. L.. Surface and Coatings Technology, 2004, 187: 245

[12]

TrticaM., GakovicB., BataniD., DesaiT., PanjanP., RadakB.. Applied Surface Science, 2006, 253: 2551

[13]

SreckovicM., MilosavljevicA., KovacevicA., GospavicR., TrticaM., RisticZ., Cantrak. FME Transactions, 2008, 36: 167

[14]

JianglongL., QiquanL., ZhirongZ.. Surface and Coatings Technology, 1993, 57: 191

[15]

ChenX., WuG., WangR., GuoW., YangJ., CaoS., HanW.. Surface and Coatings Technology, 2007, 201: 4843

[16]

StasicJ., TrticaM., GakovicB., BataniD., DesaiT., BrankovicG.. Applied Surface Science, 2009, 255: 8221

[17]

DemirP., KacarE., AkmanE., DemirA.. Acta Physica Polonica A, 2014, 125: 439

[18]

RegY., LeitzK. H., SchmidtM.. Physics Procedia, 2011, 12: 182

[19]

WynneA. E., StuartB. C.. Applied physics A, 2003, 76: 373

[20]

MustafaF. F.. Al-Khwarizmi Engineering Journal, 2008, 4: 98

[21]

ZhaoX., ShinY. C.. Applied Surface Science, 2013, 283: 94

[22]

GaneevR. A., BoltaevG. S., TugushevR. I., UsmanovT.. Applied Physics A: Materials Science & Processing, 2010, 100: 119

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/