Nondestructive characterization of the domain structure of periodically poled lithium niobate crystal based on rigorous coupled-wave analysis

Bao-lu Tian, Huai-xi Chen, Dismas K. Choge, Yi-bin Xu, Guang-wei Li, Wan-guo Liang

Optoelectronics Letters ›› , Vol. 13 ›› Issue (3) : 206-209.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (3) : 206-209. DOI: 10.1007/s11801-017-7049-y
Article

Nondestructive characterization of the domain structure of periodically poled lithium niobate crystal based on rigorous coupled-wave analysis

Author information +
History +

Abstract

We report rigorous coupled-wave analysis (RCWA) method to non-destructively characterize the domain structure of periodically poled lithium niobate (PPLN) crystal. The strong light diffraction effect is achieved by applying a proper external voltage. We can observe reversed domain pattern and employ the detected diffraction intensity to optimally fit the result of RCWA based on least square method. Compared with conventional scalar diffraction theory, more accurate domain structure parameters with accuracies of 0.05 μm and 0.005 for the period and duty cycle are obtained respectively. It is proved that accurate, real-time and nondestructive characterization can be realized via this method. 1

Cite this article

Download citation ▾
Bao-lu Tian, Huai-xi Chen, Dismas K. Choge, Yi-bin Xu, Guang-wei Li, Wan-guo Liang. Nondestructive characterization of the domain structure of periodically poled lithium niobate crystal based on rigorous coupled-wave analysis. Optoelectronics Letters, , 13(3): 206‒209 https://doi.org/10.1007/s11801-017-7049-y

References

[1]
ChangJ. W., YauH. F., ChungH. P., ChangW. K., ChenY. H.. Appl. Opt., 2014, 53: 5312
CrossRef Google scholar
[2]
GamalyE. G., JuodkazisS., MizeikisV., MisawaH., RodeA. V., KrolikowskiW.. Phys. Rev. B, 2010, 81: 054113
CrossRef Google scholar
[3]
YangL., Bai-gangZ., De-gangX., XinD., PengW.. Optoelectron. Lett., 2005, 1: 10
CrossRef Google scholar
[4]
BrooksP., TownsendP. D., HoleD. E., CallejoD., BermúdezV., DiéguezE.. J. Phys. Appl. Phys., 2003, 36: 969
CrossRef Google scholar
[5]
MüllerM., SoergelE., BuseK.. Opt. Lett., 2003, 28: 2515
CrossRef Google scholar
[6]
SotomeM., KidaN., HoriuchiS., OkamotoH.. Appl. Phys. Lett., 2014, 105: 041101
CrossRef Google scholar
[7]
Dong-dongW., Yun-linC., BingL.. Acta Phys. Sinica, 2007, 56: 7153
[8]
ChenY., ZhanH., ZhouB.. Appl. Phys. Lett., 2008, 93: 222902
CrossRef Google scholar
[9]
YongZ., WangF., GerenK., ZhuS. N., XiaoM.. Opt. Lett., 2010, 35: 178
CrossRef Google scholar
[10]
ChenY., ZhangJ., LiH.. Chin. Opt. Lett., 2013, 11: 31601
CrossRef Google scholar
[11]
ShurV. Y., ZelenovskiyP. S., NebogatikovM. S., AlikinD. O., SarmanovaM.. J. Appl. Phys., 2011, 110: 052013
CrossRef Google scholar
[12]
TanakaK., SuharaT.. Electron. Lett., 2015, 51: 923
CrossRef Google scholar
[13]
KuznetsovD. K., ChezganovD. S., MingalievE. A., KosobokovM. S., ShurV. Y.. Ferroelectrics, 2016, 503: 60
CrossRef Google scholar
[14]
MoharamM. G., GrannE. B., PommetD. A., GaylordT. K.. J. Opt. Soc. Am. A, 1995, 12: 1069
[15]
LiL.. J. Opt. Soc. Am. A, 1996, 13: 1870
CrossRef Google scholar
[16]
XingL., Shu-qiangC., Wan-guoL., Huai-xiC.. Acta Photonica Sinica, 2016, 45: 1004
[17]
XiangX., EscutiM. J.. Proc SPIE, 2017, 10127: 101270D-1

This work has been supported by the National High Technology Research and Development Program of China (No.2013AA030501).

Accesses

Citations

Detail

Sections
Recommended

/