Nondestructive characterization of the domain structure of periodically poled lithium niobate crystal based on rigorous coupled-wave analysis

Bao-lu Tian , Huai-xi Chen , Dismas K. Choge , Yi-bin Xu , Guang-wei Li , Wan-guo Liang

Optoelectronics Letters ›› : 206 -209.

PDF
Optoelectronics Letters ›› : 206 -209. DOI: 10.1007/s11801-017-7049-y
Article

Nondestructive characterization of the domain structure of periodically poled lithium niobate crystal based on rigorous coupled-wave analysis

Author information +
History +
PDF

Abstract

We report rigorous coupled-wave analysis (RCWA) method to non-destructively characterize the domain structure of periodically poled lithium niobate (PPLN) crystal. The strong light diffraction effect is achieved by applying a proper external voltage. We can observe reversed domain pattern and employ the detected diffraction intensity to optimally fit the result of RCWA based on least square method. Compared with conventional scalar diffraction theory, more accurate domain structure parameters with accuracies of 0.05 μm and 0.005 for the period and duty cycle are obtained respectively. It is proved that accurate, real-time and nondestructive characterization can be realized via this method. 1

Cite this article

Download citation ▾
Bao-lu Tian, Huai-xi Chen, Dismas K. Choge, Yi-bin Xu, Guang-wei Li, Wan-guo Liang. Nondestructive characterization of the domain structure of periodically poled lithium niobate crystal based on rigorous coupled-wave analysis. Optoelectronics Letters 206-209 DOI:10.1007/s11801-017-7049-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

ChangJ. W., YauH. F., ChungH. P., ChangW. K., ChenY. H.. Appl. Opt., 2014, 53: 5312

[2]

GamalyE. G., JuodkazisS., MizeikisV., MisawaH., RodeA. V., KrolikowskiW.. Phys. Rev. B, 2010, 81: 054113

[3]

YangL., Bai-gangZ., De-gangX., XinD., PengW.. Optoelectron. Lett., 2005, 1: 10

[4]

BrooksP., TownsendP. D., HoleD. E., CallejoD., BermúdezV., DiéguezE.. J. Phys. Appl. Phys., 2003, 36: 969

[5]

MüllerM., SoergelE., BuseK.. Opt. Lett., 2003, 28: 2515

[6]

SotomeM., KidaN., HoriuchiS., OkamotoH.. Appl. Phys. Lett., 2014, 105: 041101

[7]

Dong-dongW., Yun-linC., BingL.. Acta Phys. Sinica, 2007, 56: 7153

[8]

ChenY., ZhanH., ZhouB.. Appl. Phys. Lett., 2008, 93: 222902

[9]

YongZ., WangF., GerenK., ZhuS. N., XiaoM.. Opt. Lett., 2010, 35: 178

[10]

ChenY., ZhangJ., LiH.. Chin. Opt. Lett., 2013, 11: 31601

[11]

ShurV. Y., ZelenovskiyP. S., NebogatikovM. S., AlikinD. O., SarmanovaM.. J. Appl. Phys., 2011, 110: 052013

[12]

TanakaK., SuharaT.. Electron. Lett., 2015, 51: 923

[13]

KuznetsovD. K., ChezganovD. S., MingalievE. A., KosobokovM. S., ShurV. Y.. Ferroelectrics, 2016, 503: 60

[14]

MoharamM. G., GrannE. B., PommetD. A., GaylordT. K.. J. Opt. Soc. Am. A, 1995, 12: 1069

[15]

LiL.. J. Opt. Soc. Am. A, 1996, 13: 1870

[16]

XingL., Shu-qiangC., Wan-guoL., Huai-xiC.. Acta Photonica Sinica, 2016, 45: 1004

[17]

XiangX., EscutiM. J.. Proc SPIE, 2017, 10127: 101270D-1

AI Summary AI Mindmap
PDF

78

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/