Two-photon polymerization fabrication and Raman spectroscopy research of SU-8 photoresist using the femtosecond laser

Zi-jian Chen , Ji Yao , Qing-ji Xu , Zhen-hua Wang

Optoelectronics Letters ›› : 210 -213.

PDF
Optoelectronics Letters ›› : 210 -213. DOI: 10.1007/s11801-017-7043-4
Article

Two-photon polymerization fabrication and Raman spectroscopy research of SU-8 photoresist using the femtosecond laser

Author information +
History +
PDF

Abstract

In this work, a two-photon polymerization (2PP) processing device was built using the femtosecond laser, and femtosecond laser direct writing was performed on SU-8 photoresist. Due to the 2PP effect of the photoresist caused by the femtosecond laser, the polymeric line with size less than the focal spot size is obtained. Based on the Raman spectroscopy characterization of SU-8 polymer before and after 2PP, we research the dynamic process of femtosecond laser induced 2PP. In Raman spectra, some scattering peaks with large intensity variation, such as 1 108 cm-1 and 1 183 cm-1, indicate that the asymmetric stretching vibration of C-O-C bond in SU-8 polymer is increased. By comparison, we can find that 2PP only affects the light absorption of initiator, but does not affect the monomer polymerization. It is helpful to understand the interaction of photoresist and femtosecond laser, and plays an important role in quantitatively controlling the polymerization degree of SU-8 polymer and improving the processing resolution of 2PP.1

Cite this article

Download citation ▾
Zi-jian Chen, Ji Yao, Qing-ji Xu, Zhen-hua Wang. Two-photon polymerization fabrication and Raman spectroscopy research of SU-8 photoresist using the femtosecond laser. Optoelectronics Letters 210-213 DOI:10.1007/s11801-017-7043-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

SelimisA, MironovV, FarsariM. Microelectronic Engineering, 2014, 132: 83

[2]

MalinauskasM, ZcaronukauskasA, HasegawaS, HayasakiY, MizeikisV, BuividasR, JuodkazisS. Light: Science & Applications, 2016, 5: 16133

[3]

GaoX Y, LiY D, SunQ, TiaoJ G. Journal of Optoelectronics ·Laser, 2015, 26: 925

[4]

GenoletG, LorenzH. Micromachines, 2014, 5: 486

[5]

LeeJ B, ChoiK H, YooK. Micromachines, 2014, 6: 1

[6]

SteinbergC, PapenheimM, WangS, ScheerH C. Microelectronic Engineering, 2016, 155: 14

[7]

BakhtinaN A, LoeffelmannU, MackinnonN, KorvinkJ G. Advanced Functional Materials, 2015, 25: 1683

[8]

AccotoC, QualtieriA, PisanelloF, RicciardiC, PirriC F, VittorioM D, RizziF. Journal of Microelectromechanical Systems, 2015, 24: 1038

[9]

AekboteB L, FeketeT, JacakJ, VizsnyiczaiG, OrmosP, KelemenL. Biomedical Optics Express, 2016, 7: 45

[10]

WuJ P, ChuF H, WangZ. Journal of Optoelectronics ·Laser, 2015, 26: 1309

[11]

ZhangL, ShenH L, YouJ Y, QianB, LuoL L. Journal of Optoelectronics·Laser, 2015, 26: 2325

[12]

KatuninA, KrukiewiczK, TurczynR. Chemik Science- Technique-Market, 2014, 68: 957

[13]

M Kakunuri and C S Sharm, ECS Transactions 66, 57 (2015).

[14]

VizsnyiczaiG, LestyánT, JoniovaJ, AekboteB L, StrejckováA, OrmosP, MiskovskyP, KelemenL, BánóG. Langmuir, 2015, 31: 10087

[15]

GrimaldiI A, TestaG, PersichettiG, LoffredoF, VillaniF, BerniniR. Biosensors & Bioelectronics, 2016, 86: 827

[16]

ChikeK E, MyrickM L, LyonR E, AngelS M. Applied Spectroscopy, 1993, 47: 1631

[17]

VaškovaH, KresalekV. International Journal of Mathematical Models and Methods in Applied Sciences, 2011, 5: 1197

[18]

MeradL, CochezM, MargueronS, JauchemF, FerriolM, BenyoucefB, BoursonP. Polymer Testing, 2009, 28: 42

[19]

ChenY T, LeeD. Journal of Micromechanics & Microengineering, 2007, 17: 1978

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/