Time constant optimization of solar irradiance absolute radiometer

Xiao Tang , Wei Fang , Yu-peng Wang , Dong-jun Yang , Xiao-long Yi

Optoelectronics Letters ›› : 179 -183.

PDF
Optoelectronics Letters ›› : 179 -183. DOI: 10.1007/s11801-017-7032-7
Article

Time constant optimization of solar irradiance absolute radiometer

Author information +
History +
PDF

Abstract

We experimentally evaluate and optimize the time constant of solar irradiance absolute radiometer (SIAR). The systemic error introduced by variable time constant is studied by a finite element method. The results shown that, with a classic time constant of 30 s for SIAR, the systemic errors are 0.06% in the midday and 0.275% in the morning and afternoon. The uncertainty level which can be considered negligible for SIAR is also investigated, and it is suggested that the uncertainty level has to be less than 0.02%. Then, combining the requirement of international comparison with these two conclusions, we conclude that the suitable time constant for SIAR is 20 s.1

Cite this article

Download citation ▾
Xiao Tang, Wei Fang, Yu-peng Wang, Dong-jun Yang, Xiao-long Yi. Time constant optimization of solar irradiance absolute radiometer. Optoelectronics Letters 179-183 DOI:10.1007/s11801-017-7032-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

KoppG., FehlmannA., FinsterleW., HarberD., HeuermanK., WilsonR.. Metrologia, 2012, 49: S29

[2]

PulliT., DonsbergT., PoikonenT., ManoocheriF., KarhaP., IkonenE.. Light: Science & Applications, 2015, 4: 332

[3]

KyleH., HoytD., HickeyJ.. Solar Physics, 1994, 152: 9

[4]

WangY., HuX., WangH., YeX., FangW.. Optics and Precision Engineering, 2015, 23: 1807

[5]

YangD., FangW., YeX., SongB.. Optics and Precision Engineering, 2015, 23: 1813

[6]

SongB., YeX., YangD., JiangM., FangW.. Optics and Precision Engineering, 2015, 23: 1903

[7]

TangX., FangW., WangY.. Chinese Journal of Lasers, 2016, 43: 0408003

[8]

FangW., YuB., YaoH., LiZ., GongC., JinX.. Acta Optica Sinica, 2003, 23: 112

[9]

WangH., LiH., FangW.. Applied Optics, 2014, 53: 1718

[10]

YangZ., LuN., ShiJ., ZhangP., DongC., YangJ.. IEEE Transaction on Geoscience and Remote Sensing, 2012, 50: 4846

[11]

RogalskiA., ChrzanowskiK.. Metrology and Measurement Systems, 2014, 21: 565

[12]

FangW., WangH., LiH., WangY.. Solar Physics, 2014, 289: 4711

[13]

YangZ., FangW., LuoY., XiaZ.. Chinese Optics Letters, 2014, 12: 101202

[14]

PangW., ZhengX., LiJ., ShiX., WuH., XiaM., GaoD., ShiJ., QiT., KangQ.. Chinese Optics Letters, 2015, 13: 051201

[15]

KoppG., LawrenceG.. Solar Physics, 2005, 230: 91

[16]

TangX., FangW., LuoY., WangK., XiaZ.. Acta Optica Sinica, 2016, 36: 1012004

[17]

TangX., JiaP., WangK., SongB., FangW., WangY.. Optics and Precision Engineering, 2016, 24: 2370

[18]

FangQ.. Research of the Blackbody Cavity and Nonequivalence of Spatial Cryogenic Radiometer, 2014,

[19]

FangQ., FangW., YangZ., YuB., HuH.. Metrologia, 2012, 49: 572

[20]

ChenX., FangW., WangY., YangZ., QuanX.. Acta Optica Sinica, 2015, 35: 0912003

[21]

FedchakJ., CarterA., DatlaR.. Metrologia, 2006, 43: S41

[22]

JCG Metrology, Evaluation of Measurement Data — Guide to the Expression of Uncertainty in Measurement, (2008).

[23]

FinsterleW., BlattnerP., MoebusS., RuediI., WehrliC., WhiteM., SchmutzW.. Metrologia, 2008, 45: 377

[24]

FinsterleW.. WMO International Pyrheliometer Comparison IPC-XFinal Report, 2011,

AI Summary AI Mindmap
PDF

81

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/