The optical properties of Tm3+ doped Na5Lu9F32 single crystal

Qi-guo Sheng , Hai-ping Xia , Qing-yang Tang , Shi-nan He , Jian-li Zhang , Bao-jiu Chen

Optoelectronics Letters ›› : 201 -205.

PDF
Optoelectronics Letters ›› : 201 -205. DOI: 10.1007/s11801-017-7025-6
Article

The optical properties of Tm3+ doped Na5Lu9F32 single crystal

Author information +
History +
PDF

Abstract

Tm3+ doped Na5Lu9F32 single crystal with high optical quality was grown by an improved Bridgman method. The Judd-Ofelt intensity parameters Ωt (t=2, 4, 6) were calculated according to the measured absorption spectra and physical-chemical properties of the obtained Na5Lu9F32 single crystal. The stimulated emission cross-section of the 3F43H6 transition (~1.8 μm) is 0.35×10-20 cm2 for Tm3+ doped Na5Lu9F32 single crystal. The emission spectra under the excitation of 790 nm laser diode (LD) and fluorescence lifetime at 1.8 μm were measured to reveal the fluorescence properties of Tm3+ doped Na5Lu9F32 single crystal. The research results show that the Tm3+ doped Na5Lu9F32 single crystal has larger stimulated emission cross-section compared with other crystals. All these spectral properties suggest that this kind of Tm3+doped Na5Lu9F32 crystal with high physical-chemical stability and high-efficiency emission at 1.8 μm may be used as potential laser materials for optical devices.

Cite this article

Download citation ▾
Qi-guo Sheng, Hai-ping Xia, Qing-yang Tang, Shi-nan He, Jian-li Zhang, Bao-jiu Chen. The optical properties of Tm3+ doped Na5Lu9F32 single crystal. Optoelectronics Letters 201-205 DOI:10.1007/s11801-017-7025-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

WangC, XiaH-p, FengZ-g, ZhangZ-x, JiangD-s, ZhangJ, ShengQ-g, TangQ-y, HeS-n, JiangH-c, ChenB-j. Optoelectronics Letters, 2016, 12: 56

[2]

LiY F, QuY, SunY M, HouX Y, QiH J. Acta Photonica Sinica, 2007, 36: 591

[3]

PanC, Feng-jingY, Zi-zhongZ, BoH, Li-boW, Ya-xunZ. Optoelectronics Letters, 2016, 12: 340

[4]

GuoW, ChenY, LinY, GongX, LuoZ, HuangY. Journal of Physics D: Applied Physics, 2008, 41: 115409

[5]

NC, GG, DP, MT, PL. Optics Letters, 2008, 33: 1951

[6]

YanH, ChenX, SongH, WangX, ShiZ, LinQ. Materials Letters, 2017, 187: 101

[7]

Jiang Dong-sheng, Jiang Yong-zhang, Xia Hai-ping, Zhang Jia-zhong, Yang Shuo, Gu Xue-mei, Jiang Hao-chuan and Chen Bao-jiu, Optoelectronics Letters 11, 356 (2015).

[8]

Wu Lei, Zhang Hai-ming, Zhang Jing-Jing, Guo Cong, Ji Zi-ye and Bai Xiao-gang, Journal of Optoelectronics ·Laser 26, 2340 (2015). (in Chinese)

[9]

ZhengJ, ChengY, WuZ-q, ZhouW-w, TangM-x. Journal of Optoelectronics·Laser, 2015, 26: 1924

[10]

Shmyt’koI M, StrukovaG K. Physics of the Solid State, 2009, 51: 1907

[11]

Sana J., Cases R. and Alcala R., Journal of Non-Crystalline Solids 93, 377 (1987).

[12]

WangP, XiaH, PengJ, TangL, HuH. Journal of Optoeletronics·Laser, 2013, 24: 2143

[13]

CornacchiaF, PalatellaL, ToencelliA. Journal of Physics and Chemistry of Solids, 2002, 63: 197

[14]

ShuoY, HaipingX, Yongzhangj, JiazhongZ, YiwenS, XuemeiG, JianliZ, YuepinZ, HaochuanJ, BaojiuC. Journal of Alloys and Compounds, 2015, 643: 1

[15]

JingX, HaiyanP, PengchaoH, YinH, LianhanZ. Journal of Physics D: Applied Physics, 2010, 43: 185

AI Summary AI Mindmap
PDF

65

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/