Influence of linear birefringence on Faraday effect measurement for optical fibers

Huang-chao Chen, Jian-xiang Wen, Yi Huang, Wei-long Dong, Fu-fei Pang, Yan-hua Luo, Gang-ding Peng, Zhen-yi Chen, Ting-yun Wang

Optoelectronics Letters ›› , Vol. 13 ›› Issue (2) : 147-150.

Optoelectronics Letters ›› , Vol. 13 ›› Issue (2) : 147-150. DOI: 10.1007/s11801-017-7022-9
Article

Influence of linear birefringence on Faraday effect measurement for optical fibers

Author information +
History +

Abstract

The influence of the linear birefringence on magneto-optical property measurement for optical fibers is investigated theoretically and experimentally. The evolution of polarization in fibers is simulated by the Jones matrix. To verify this theoretical model, a magneto-optical system is built to measure the input azimuth, output azimuth and ellipticity. The Faraday rotation of spun fibers with different pitches is measured. The Verdet constant increases, while the linear birefringence decreases as the pitch becomes smaller. For spun fibers with 1 mm pitch, the Verdet constant can be enhanced by about 20.7% at 660 nm, compared with that of the unspun fiber. The results indicate that smaller linear birefringence can provide more accurate Faraday rotation measurement.

Cite this article

Download citation ▾
Huang-chao Chen, Jian-xiang Wen, Yi Huang, Wei-long Dong, Fu-fei Pang, Yan-hua Luo, Gang-ding Peng, Zhen-yi Chen, Ting-yun Wang. Influence of linear birefringence on Faraday effect measurement for optical fibers. Optoelectronics Letters, , 13(2): 147‒150 https://doi.org/10.1007/s11801-017-7022-9

References

[1]
WenH., TerrelM. A., KimH. K.. J. Lightw. Technol., 2009, 27: 3194
CrossRef Google scholar
[2]
MullerG. M., GuX., YangL., FrankA., BohnertK.. Opt Express, 2016, 24: 11164
CrossRef Google scholar
[3]
JamonD., RoyerF., ParsyF.. J. Lightw. Technol., 2013, 31: 3151
CrossRef Google scholar
[4]
PercianteC. D.. J. Membr. Sci., 2008, 25: 1994
[5]
PercianteC. D., AparicioS., IllaR.. Appl. Opt., 2015, 54: 5708
CrossRef Google scholar
[6]
HuangY., ChenL., PangF., WenJ.The Measurement System of Birefringence and Verdet Constant of Optical FiberProceedings of SPIE-The International Society for Optical Engineering, 2013, 9046
[7]
BeravatR., WongG.K., XiX.M., FroszM.H., StJ.R.P.. Opt. Lett., 2016, 41: 1672
CrossRef Google scholar
[8]
MartinelliM., MartelliP.. Adv. Opt. Photonics, 2017, 9: 129
CrossRef Google scholar
[9]
ChartierT., HideurA., ÖzkulC., SanchezF., StéphanG.M.. Appl. Opt., 2001, 40: 5343
CrossRef Google scholar
[10]
KimS., HongY. P., G KunY., LeeD. J.. Adv. Opt., 2017, 56: 1701
[11]
SlezkO., YasuharaP., LucianettiA., MocekT.. Opt. Mater. Express, 2016, 6: 3683
CrossRef Google scholar
[12]
VasilievS. A., PrzhiyalkovskyY. V., GnusinP. I.. Opt. Express, 2016, 24: 11290
CrossRef Google scholar
[13]
WenJ., LiuW., HuangY.. J. Lightw. Technol., 2015, 33: 2674
CrossRef Google scholar

This work has been supported by the National Natural Science Foundation of China (Nos.61177088, 61275051, 61227012, 61475096, 61422507 and 61520106014), and the Science and Technology Commission of Shanghai Municipality of China (Nos.14511105602, 14DZ1201403 and 15220721500).

Accesses

Citations

Detail

Sections
Recommended

/